

Copyright notice:

 2021-2021 CoE RAISE Consortium Partners. All rights reserved. This document is a

project document of the CoE RAISE project. All contents are reserved by default and may

not be disclosed to third parties without the written consent of the CoE RAISE partners,

except as mandated by the European Commission contract 951733 for reviewing and

dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are

acknowledged as own by the respective holders.

Report on porting and performance analysis

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 2 23.12.2021

Table of Contents

Project and Deliverable Information Sheet .. 1

Document Control Sheet... 1

Document Status Sheet .. 2

Document Keywords ... 3

Table of Contents .. 4

List of Figures.. 5

List of Tables ... 6

Executive Summary .. 7

1 Introduction .. 8

2 Access to supercomputing resources .. 10

2.1 Compute time on prototype systems .. 10

2.2 Compute time on production systems for performance engineering 10

2.3 Compute time for application cases .. 11

2.4 Data repositories ... 11

3 Porting and performance analysis of Alya from BSC .. 13

3.1 Overview ... 13

3.2 Porting .. 14

3.2.1 Porting to JUWELS-BOOSTER .. 14

3.2.2 Porting to Rudens at RTU HPC .. 15

3.3 Optimization ... 16

3.3.1 Optimization of the critical time step computation ... 18

3.3.2 Optimization of the element assembly ... 19

3.4 Performance analysis ... 19

3.4.1 Alya: time step computation .. 20

3.4.2 Workflow .. 20

4 Porting and performance analysis of m-AIA from RWTH .. 23

4.1 Overview of m-AIA ... 23

4.2 Setting up the environment for porting m-AIA to GPGPUs ... 23

4.3 Optimization of m-AIA via GPGPU porting ... 24

4.4 Performance analysis of the m-AIA GPGPU port ... 26

5 Porting and performance analysis of AI technologies .. 29

5.1 Overview of datasets used in ML benchmarks .. 29

5.2 Porting existing ML frameworks to heterogeneous systems ... 31

5.2.1 A brief overview of used ML frameworks ... 31

5.2.2 Porting ML frameworks .. 32

5.2.3 Initialization of used frameworks .. 34

5.3 Performance analysis of existing ML frameworks on heterogeneous systems 38

6 Summary and conclusions .. 43

References ... 44

List of Acronyms and Abbreviations ... 46

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 3 23.12.2021

List of Figures

Figure 1: Snapshot of the flow solution (Q-vorticity contours) obtained on the Bolund mountain
case with Alya ..17

Figure 2: Alya CPU time before optimization of time step computation17

Figure 3: Alya CPU time after optimization of the time step computation20

Figure 4: Alya workflow for the training phase ...21

Figure 5: Contour plots of the axial velocity on the middle plane of the TGV with 16.7 million
computational elements. ...26

Figure 6: Performance of m-AIA to simulate a TGV case with 16.7 million elements on the
JUWELS-BOOSTER module using only CPUs (m-AIA CPU and m-AIA ideal) and both CPUs
with GPGPU acceleration (m-AIA GPU). The m-AIA CPU in the top row employs the same
number of threads as the m-AIA GPU variant. The ranks denote the number of subdomains,
i.e., each rank uses a single SMT thread with a single GPGPU. The bottom row utilizes all the
SMT threads (in this case 96). Note the bottom row has the number of nodes on the x-axis.
.. 27

Figure 7: Performance of the PyTorch-DDP framework for training on a small version of the
ATBL dataset on the JUWELS-BOOSTER. Each node consists of four NVIDIA A100 GPGPUs.
Depicted are the compute time over the number of nodes (a), the strong-scaling performance
(b), the code efficiency with increasing node number (c), and the corresponding training error
(d). The configurable hyperparameter learning rate is linearly scaled. The black dashed lines
represent the ideal scenario. Note the exponential scales. ...38

Figure 8: Performance of the existing distributed data parallel frameworks for training on a
small version of the ATBL dataset on the CTE-AMD system at BSC. Each node consists of
two AMD MI50 GPGPUs. Depicted are the compute time over the number of GPGPUs (a), the
strong-scaling performance (b), the corresponding training error (c), the code efficiency under
increasing GPGPU-count (d), the relative speed-up (e), and the relative square root of the
training error (f). The configurable hyperparameters for each framework are fixed. The black
dashed lines represent the ideal scenario. Note the exponential scales.39

Figure 9: Performance of the PyTorch-DDP framework for training on a small version of the
ATBL dataset on the CTE-AMD, DEEPEST, and JUWELS-BOOSTER systems. The CTE-
AMD machine is equipped with AMD MI50 (red), the DEEP-EST system with NVIDIA V100
(blue), and the JUWELS-BOOSTER with NVIDIA A100 GPGPUs (green). Depcicted are the
compute time over the number of GPGPUs (a) and the relative performance (b). Note the
exponential scales. ...40

Figure 10: Performance of Horovod and PyTorch-DDP on the ImageNet benchmark on the
JUWELS-BOOSTER module for an increasing number of GPGPUs G. Left: Comparison of the
data throughput DT in images i per second. Right: Comparison of the parallel efficiency e 42

Figure 11: Accuracy of the ResNet50 on the validation set V of ImageNet over the overall batch
size B ...42

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 4 23.12.2021

List of Tables

Table 1: Supercomputing resources granted to CoE RAISE from PRACE11

Table 2: Preliminary performance testing results of the Alya workflow on RTU HPC EPYC
nodes using case-075 test case data ..22

Table 3: Performance testing results of Alya on RTU HPC EPYC nodes using Bolund test case
data ..22

Table 4: Performance of Horovod and PyTorch-DDP on the JUWELS-BOOSTER system; U:
percentage of average GPGPU usage at training in %; e: parallel efficiency; T: run time in
seconds; DT: data throughput in images per second ..41

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 5 23.12.2021

Executive Summary

The previous Deliverable D2.1 presented best practice guidelines and tutorials for the various

heterogeneous High-Performance Computing systems available to the European Center of

Excellence in Exascale Computing “Research on AI- and Simulation-Based Engineering at

Exascale” (CoE RAISE). The present Deliverable D2.2 is the first of a series of three

Deliverables, namely D2.2, D2.3 and D2.4, all reporting on porting codes to heterogeneous

systems, performing code optimizations, and analyzing code performance. Key results of this

work are enhancements of the performance of specific numerical components embedded in

simulation frameworks and their demonstration. These performance enhancements are key to

the success of all the use cases proposed in Work Package 3 “Compute-Driven Use-Cases at

Exascale” and Work Package 4 “Data-Driven Use-Cases at Exascale” of CoE RAISE. In this

Deliverable, these successes are demonstrated for the multi-physics simulation codes Alya

from the Barcelona Supercomputing Center and m-AIA from RWTH Aachen University. This

is complemented by an extensive scaling and accuracy study of the most important AI

frameworks.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 6 23.12.2021

1 Introduction

The architectures of next-generation supercomputers with Exascale power will evolve around

the current modular and heterogeneous setups. These systems will consist of multiple

interconnected components with each component suited for a specific set of tasks and with an

immense computational power. Such a modular approach is especially suited for compute-

and data-centric workflows that may require different High-Performance Computing (HPC)

architectures for the various potentially concurrently running workflow components.

The different use-cases of the European Center of Excellence in Exascale Computing

“Research on AI- and Simulation-Based Engineering at Exascale” (CoE RAISE) in Work

Package 3 (WP3) “Compute-Driven Use-Cases at Exascale” and in WP4 “Data-Driven Use-

Cases at Exascale” require workflows belonging to this class. They intertwine HPC methods

for simulation and data processing with Artificial Intelligence (AI) technologies at Exascale to

reduce the time-to-solution while retaining a high accuracy. The size of such simulations and

data-driven workflows in terms of computational resources and amount of data is expected to

reach unprecedented levels. Thus, porting existing codes to new architectures and new

systems as well as optimizing code is required at all levels of the workflow. This involves data

management (file transfer, data repositories), the modification of computational kernels of

simulation and data processing codes, Input/Output (I/O) tuning, and the optimization of

workflow management itself.

The Task T2.1 “Modular and heterogeneous supercomputing architectures”, which

corresponds to this Deliverable, involves heterogeneous architectures and targets porting and

optimization of the codes that contribute to the complex workflows of the use-cases in CoE

RAISE. The systems considered here include the heterogeneous HPC systems found at the

Tier-2 and Tier-3 centers of the consortium (University of Iceland - UOI, RWTH Aachen

University - RWTH, and Riga Technical University - RTU), the cutting-edge HPC systems of

the Tier-0 and Tier-1 providers (Forschungszentrum Jülich – FZJ, and Barcelona

Supercomputing Center - BSC), as well as the resources granted by the CoE’s access call of

PRACE. These resources are targeted for development, optimization, debugging, and

performance analysis purposes.

Obviously, before exploring the performance of the codes, a porting phase is necessary, which

ensures that the different codes can run on the target systems. The compilation on a new

architecture requires adjustments to the compilation options and may involve changes to the

code, e.g., to account for the specific compiler version. Only then, performance analyses and

code optimizations can be performed to test the codes and to achieve the highest possible

performance on the available systems. All optimizations will involve both Central Processing

Units (CPUs) and accelerators. However, at this stage of the project, it is not clear which

simulation codes of WP3 will eventually run concurrently with the AI tools on General Purpose

Graphics Processing Units (GPGPUs). This will become clear in the second year of the project

when full integrations of AI tools and HPC codes are achieved. All the activities of Task 2.1

correspond to the preparation of the codes to make efficiently use of the upcoming Exascale

systems.

This Deliverable is organized as follows. Section 2 describes the computational resources

available to the partners. This includes not only core-hours on European systems, but also the

data repository provided and managed by FZJ. Then the porting, optimization, and

performance analysis work is structured in two different parts. On the one-hand, Sec. 3 and

Sec. 4 provide details in this respect on two of the simulation codes involved in WP3, i.e., Alya

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 7 23.12.2021

from BSC and m-AIA from RWTH. Section 5 presents the work carried out on important AI

tools considered in CoE RAISE. Finally, Sec. 6 summarizes the work performed and draws

some conclusions.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 8 23.12.2021

2 Access to supercomputing resources

To perform code analysis, engineering and tuning, to run large-scale simulations and data

analysis, and to share data with the partners and the community, it is necessary to provide the

developers in CoE RAISE with access to supercomputing resources. Such resources can be

classified into four main categories:

● compute time on prototype systems to give developers the opportunity to port to and

test software on new hardware

● compute time on large-scale production systems to port to and scale software on real

production systems

● compute time for application cases to perform domain-specific research and data

analysis

● data repositories that can be used to share data and AI models also with respect to

performance engineering.

These resources need to be further sub-classified into resources that can be provided by CoE

RAISE for all partners to be shared and those that need to be acquired by the individual

partners. All smaller development resources and shared data spaces fall into the first sub-

category. Partners need to take care of their own computing time when it comes to their specific

science and large-scale computing requests, i.e., such resources fall into the second sub-

category.

In the following, an overview of the computational resources available within CoE RAISE is

given. This includes compute time on prototype systems, see Sec. 2.1, on production systems

for performance engineering and application cases, see Sec. 2.2 and Sec. 2.3, as well as data

repositories, see Sec 2.4.

2.1 Compute time on prototype systems

The CoE RAISE partners have access to various prototype systems that are available at the

HPC centers involved in the project. An overview of the available systems, their specifications,

accessibility, and usage for production and development can be found in Deliverable D2.5.

2.2 Compute time on production systems for performance engineering

The Partnership for Advanced Computing in Europe (PRACE)1 offers limited resources to all

CoEs via their Rapid Access Program. In 2021, CoE RAISE has applied twice for PRACE

resources through this program. In the first and the second round, compute time on main

European systems has been granted as listed in Table 1. An overview of the resources and

the systems is available for the CoE RAISE partners on the project’s Basic Support for

Cooperative Work (BSCW) server2. The first round 2021-1 period was from 01/04/2021 to

31/09/2021, the second round 2021-2 started on 01/10/2021 and runs until 31/03/2022.

round location system core-h

2021-1 CINECA Marconi100 275k3

FZJ JUWELS-BOOSTER 38k

1 PRACE https://prace-ri.eu
2 BSCW compute time https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3599273
3 781 node hours = 270k cumulative hours (unit used by PRACE)/25k local hours

https://prace-ri.eu/
https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3599273

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 9 23.12.2021

FZJ JUWELS-CLUSTER 40k

HRLS Hawk 280k

CSCS Piz Daint 510k

BSC Marenostrum4 100k

CEA Joliot-Curie Rome 150k

CEA Joliot-Curie SKL 87k

CEA Joliot-Curie KNL 94k

LRZ SuperMUC-NG 65k

2021-2 CINECA Marconi100 300k

FZJ JUWELS-BOOSTER 16k

FZJ JUWELS-CLUSTER 45k

HLRS Hawk 144k

CSCS Piz Daint 10k

BSC Marenostrum4 92k

Table 1: Supercomputing resources granted to CoE RAISE from PRACE.

2.3 Compute time for application cases

Since production runs for the use cases may require a large amount of computing resources,

they cannot be offered directly by the CoE RAISE such that the partners have to apply for them

individually on the systems of their choice. An overview of how to apply for scientific computing

resources is given in Deliverable D2.1.

As an example, FZJ and RWTH jointly applied for the compute time project “Reconstruction of

actuated turbulent boundary layers using neural networks” related to Task 3.1 “AI for turbulent

boundary layers”. The proposal requested 8.6 Mio. core-h on the GPU partition of the Jülich

Research on Exascale Cluster Architectures (JURECA) system. The resources for the

compute time project, running from Nov. 2021 to the end of Oct. 2022, were fully granted after

a successful technical and scientific review.

2.4 Data repositories

There have been requests from various CoE RAISE partners to share simulation and

measurement data. These requests mainly came from partners jointly working on a specific

use case. A shared data space also allows to reuse data in use cases that they have originally

not been intended for, which is especially favorable when the corresponding compute time

projects are running at the same HPC facility. Furthermore, in the context of porting and

performance analysis, such a joint project space can be used to share performance analysis

data, e.g., log- and trace-files, as well as simulation setups for scaling analyses.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 10 23.12.2021

To provide users with space to perform such activities, the CoE RAISE management from FZJ

applied for a 200TB data project at the Jülich Supercomputing Centre (JSC)4 that was granted

in July / 2021. CoE RAISE partners are invited to use this data space to share their data. They

can apply for an account through the JUDOOR system5, which has intensively been described

in Deliverables D2.1 “Best practice guidelines/tutorials for MSA / heterogenous systems” and

D2.5 “Best practice guidelines / tutorials prototype”. Once the user has registered, he or she

can join the data project raise.

In the project folder, a subfolder performance_engineering has been created, where the

contributors to Task 2.1, Task 2.2, and also the main code developers of the simulation and AI

tools can place, e.g., their testing setups or mini apps for performance analysis or porting, and

results from such analyses.

The data space features the capability to also share data with the community. For this purpose,

a folder open_data has been created, which, for the time of writing this document, holds data

from the two WP3 use cases “AI for turbulent boundary layers” (RWTH, approx. 15TB) and “AI

for data-driven models in reacting flows” (CERFACS, approx. 400MB). The data is available

for download through CoE RAISE’s website6. More information on the integration into CoE

RAISE’s website and the dataset details provided by the owners is given in Deliverable D6.9

“Visual Identity”.

The data is made available through UFTP (UDP - User Datagram Protocol - File Transfer

Protocol). To make use of this sharing capability, the user needs to prepare the

supercomputing environment. A detailed description on this and more information on UFTP

can be found on JSC’s website7.

4 JSC data projects https://www.fz-

juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUsageModel/DataProjects.html
5 JUDOOR https://judoor.fz-juelich.de
6 CoE RAISE open data website https://www.coe-raise.eu/open-data
7 UFTP https://apps.fz-juelich.de/jsc/hps/judac/uftp.html

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUsageModel/DataProjects.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUsageModel/DataProjects.html
https://judoor.fz-juelich.de/
https://www.coe-raise.eu/open-data
https://apps.fz-juelich.de/jsc/hps/judac/uftp.html

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 11 23.12.2021

3 Porting and performance analysis of Alya from BSC

Some porting activities have already been carried out in the context of CoE RAISE on some

machines (DEEP-EST, JUAWEI, CT-ARM, and CT-AMD) and results have been provided in

project month M6 in Deliverable D2.6 “Support report” as part of Task 2.2 “Hardware

prototypes”.

Subsequently, an overview of Alya is first provided in Sec. 3.1 before in Sec. 3.2 different

porting activities are described. This is followed by a description of optimization activities in

Sec. 3.3 and results of performance analyses in Sec. 3.4.

3.1 Overview

Alya [1] is a simulation code based on Fortran 2008 and is developed by BSC. Alya solves

coupled multi-physics problems using HPC techniques for distributed and shared memory

supercomputers, together with vectorization and optimization at the node level.

Strong scalability has been established for years, and recent efforts have mainly been devoted

to node-level performance and parallel efficiency. In this sense: (i) A co-execution model has

been developed to fully exploit heterogeneous resources and therefore enhance resource

usage. (ii) An intra-node dynamic load balance strategy was implemented to correct load

imbalances using the Dynamic Load Balancing (DLB) library developed at BSC8. (iii) At the

inter-node level, a runtime redistribution mechanism based on real timings was implemented

as well as a partition independent I/O strategy. (iv) To further enhance efficiency when solving

multi-physics problems, an oversubscription strategy has been developed to avoid idle cores.

(v) A continuous monitoring of the code enables to obtain the exact parallel efficiency, as a

combination of communication efficiency and load balance, with the Tracking Application Low-

level Performance library (TALP) developed at BSC.

To monitor the progress, BSC has developed a performance suite, run whenever a new version

of the code is available (several times a week). In addition, this suite allows the development

team to detect failures in the performance. It is fully integrated into the Continuous Integration

/ Continuous Delivery (CI/CD) approach the team follows. Therefore, any advances in the code

can be compared to previous versions and quantified. As far as weak scalability is concerned,

external weak-scalable solvers (multigrid, domain decomposition) were integrated into the

code, mainly in the course of the Energy Oriented Center of Excellence-II (EoCoE-II) project9.

Scalability has been demonstrated by the different Unified European Applications Benchmark

Suite (UEABS) reports up to 32k cores (although strong scalability was established on Blue

Waters in 2014 up to 100k cores for production multi-physics runs). The speed-up obtained is

usually over 80% and of course, depends on the load per core. But in such tests, the speed-

up is normalized using the lowest core count possible on the machine, which is sometimes

quite high.

To know the real parallel efficiency, BSC integrated the TALP library into Alya. One of the

objectives is to include this library for the testing of the UEABS, to get the correct parallel

efficiencies (which are in general different from the one stated by the classical normalization

mentioned before). The code has been tested using a hybrid MPI/OpenMP approach in

combination with the DLB library. A co-execution model enables the code to take advantage

of both CPU and GPGPU heterogeneous architectures.

8 DLB library: https://pm.bsc.es/dlb
9 EOCOE-2 project: https://www.eocoe.eu

https://pm.bsc.es/dlb
https://www.eocoe.eu/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 12 23.12.2021

module load NVHPC/21.5-GCC-10.3.0 OpenMPI/4.1.1

CoE RAISE aims at introducing AI technologies into the code while conserving the scalability

enhancements made in Task 2.1 “Modular and heterogeneous supercomputing architectures”

and Task 3.2 “AI for wind farm layout optimization” of CoE RAISE. In the course of the project,

the focus is therefore on the implementation of efficient AI surrogates as well as their

integration into the simulation workflow. Furthermore, the AI training phase will require specific

tools to be implemented in the code which need to satisfy the Exascale requirements. It should

be noted that at this stage it is not known if the Computational Fluids Dynamics (CFD)

component of Alya will run in a co-execution mode together with AI tools during the high-fidelity

training phase as well as during the simulation of the wind farm including the surrogates.

Finally, it should be noted that all the optimizations and developments carried out in the context

of RAISE can be identified in Alya GitLab in the branches with label project:raise10.

3.2 Porting

Porting Alya to GPGPUs already started in 2018. A first version was published in [2], where a

co-execution model is presented, which enables to almost fully exploit a heterogeneous node.

The main assembly kernel of the Navier-Stokes equations has then been optimized in the

context of the EoCoE-II project. Despite the high gains obtained for this kernel, Amdahl’s law

exhibited some new bottlenecks in subroutines not already ported, like the loop over elements

to compute the critical time step. The corresponding subroutines have thus been modified to

remove this constraining bottleneck and a performance analysis has been performed. To

further accelerate the execution on GPGPUs, physical properties can now be computed on the

fly during the assembly phase, instead of transferring them from the main memory. In the

following, these optimization activities are described. It should, however, be noted that the

performance analysis could not be finalized on time for this Deliverable. The complete results

will hence be included in the subsequent version of this document, i.e., in Deliverable D2.3,

which is due in project month M24.

3.2.1 Porting to JUWELS-BOOSTER

Thanks to the high portability of Alya, the program can run on the Jülich Wizard for European

Leadership Science (JUWELS) system and on other supercomputers by only changing a few

parameters and initial settings in the configure file and loading the proper environment

modules.

For the JUWELS-BOOSTER, the first step is to load these two environment modules:

Then, once the source code is downloaded using git, we have to define in the

Executables/unix folder a configure file config.in as shown next. Alya can compile as

well using cmake, and all the options will soon be implemented for their use with cmake.

10 Developments and optimizations implemented in Alya in the context of CoE RAISE on Alya gitlab:
https://gitlab.com/bsc-alya/alya/-/merge_requests?scope=all&state=all&label_name[]=project%3Araise

https://gitlab.com/bsc-alya/alya/-/merge_requests?scope=all&state=all&label_name%5b%5d=project%3Araise

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 13 23.12.2021

module load cmake/3.15.4 gnu8/8.3.0 mpi/openmpi-4.1.1

3.2.2 Porting to Rudens at RTU HPC

The RTU HPC cluster Rudens is using CentOS11, EPEL12, and the OpenHPC13 software

package repositories. The GPGPU nodes on Rudens feature the NVIDIA A100 GPGPUs which

benefit from the most recent version of the CUDA toolkit14.

The RTU HPC environment uses a queuing system to match users’ jobs with available

computing resources. Users submit their programs to the job scheduler (Portable Batch

System, PBS15), which maintains a queue of jobs and distributes them on the compute nodes

according to the server status, scheduling policies, and jobs parameters (number of compute

nodes / cores, estimated execution time, required memory, etc.).

RTU is the AI partner of BSC in CoE RAISE, i.e., this porting is key for the developments and

testing of the proposed AI strategies. To compile Alya in the RTU HPC environment, it is

necessary to load these modules:

11 CentOS https://www.centos.org
12 EPEL https://docs.fedoraproject.org/en-US/epel/
13 OpenHPC https://openhpc.community
14 CUDA toolkit https://developer.nvidia.com/cuda-toolkit
15 PBS https://www.pbspro.org

PGI CONFIGURE #

F77 = OMPI_FC=pgfortran mpif90

F90 = OMPI_FC=pgfortran mpif90

FCOCC = cc -c

FCFLAGS = -c -fast -Minfo=all -acc -ta=tesla:cuda11.3 -Mpreprocess -

I./Objects_x/ -Mbackslash -Mextend -Mnoopenmp -Munroll -Mnoidiom -module $O

EXTRALIB = -lc

Fa2p = pgfortran -c -x f95-cpp-input -DMPI_OFF -J../../Utils/user/alya2pos -

I../../Utils/user/alya2pos

Fa2plk = pgfortran

PERFORMANCE FLAGS #

FOPT = OMPI_FC=pgfortran mpif90

CSALYA := $(CSALYA) -DNDIMEPAR -DOPENACCHHH -DSUPER_FAST -DDETAILED_TIMES -

DSPLITDO

CSALYA := $(CSALYA) -DVECTOR_SIZE=32000

https://www.centos.org/
https://docs.fedoraproject.org/en-US/epel/
https://openhpc.community/
https://developer.nvidia.com/cuda-toolkit
https://www.pbspro.org/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 14 23.12.2021

mkdir build

cd build

cmake ..

set(CUSTOM_Fortran_FLAGS_ARCHITECTURE "-march=znver1 -mtune=znver1")

make

make -j4

make install

After the source code is downloaded from the git repository, it is necessary to configure and

compile Alya by following the CMake16 configuration principles.

In the Alya directory, a new build directory needs first to be created:

To configure CMake using the command line, the following needs to be executed:

By default, the compiled Alya executables will be optimized for the processor architecture used

by the login node. To adapt to a specific architecture, it is possible to modify the corresponding

CMake configuration flags in config/gnu.cmake file. For example, to tune executables for

AMD EPYC architecture, the following flags can be used:

To start the compilation process, the following command is issued:

Multiple threads for the compilation can be employed via (4 threads in the given example):

To install Alya in the build directory, type the following command:

3.3 Optimization

Any code optimization should begin by analyzing the execution times for the problem of study.

Here, the focus is on the analysis of those parts of the code that take most of the time in the

execution phase of Alya to study the viability of carrying out code changes. It is the aim to

reduce the execution time by minimizing the effort of changing the code.

As mentioned before, one of the goals is the use of AI tools for wind farm layout optimization.

For this reason, a potential wind farm layout at the Bolund mountain is considered. The

simulation is based on the solution of the Navier-Stokes equations using an LES turbulence

model, where the computational mesh consists of 30 million elements. A snapshot of the

solution is shown in Figure 1.

16 CMake https://cmake.org

https://cmake.org/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 15 23.12.2021

Figure 1: Snapshot of the flow solution (Q-vorticity contours) obtained on the Bolund mountain case with
Alya.

As the computational pattern is repeated over time, only short executions on the JUWELS

system, using 48 CPUs and 4 GPUs, are performed. The execution times for the 10 first solver

iterations are shown in Figure 2.

Figure 2: Alya CPU time before optimization of time step computation.

As it can clearly be seen, there are two main parts of the code that take almost all the time for

solving the governing equations: the beginning of a time step in red and the iteration operations

in blue.

In the context of this project, we use a fractional step method to solve the Navier-Stokes

equations [3]. The finite element assembly consists of a loop over the elements of the mesh to

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 16 23.12.2021

#ifdef OPENACC

#define DEF_VECT ivect

use openacc

#else

#define DEF_VECT 1:VECTOR_SIZE

#endif

#ifdef OPENACC

!$acc data create(…) &

!$acc copyin(…)

!$acc parallel loop gang vector default(present)

do ivect = 1,VECTOR_SIZE

#endif

do g = 1,ngaus

do j = 1,nnode

do i = 1,nnode

Ae(DEF_VECT,i,j) = Ae(DEF_VECT,i,j)+Jac(DEF_VECT,g)*N(i,g)*N(j,g)

end do

end do

end do

#ifdef OPENACC

end do

!$acc end parallel loop

!$acc end data

#endif

compute elemental right-hand sides, which are further assembled into a global right-hand side.

With respect to the Iteration operations, most of the time is consumed in this right-hand side

assembly operations (shown in blue). In the Begin time step part, the calculation of the critical

time step (shown in red) takes almost all of execution time. This calculation is performed

exclusively on CPUs.

In the following Sec. 3.3.1 and Sec. 3.3.2 the optimization of the critical time step computation

and the element assembly are presented.

3.3.1 Optimization of the critical time step computation

As described in [2], both vectorization and OpenACC17 portings are based on the same code,

defining a VECTOR_SIZE at compilation time. The subsequently displayed algorithm illustrates

the concept for the calculation of the element mass matrix Ae, where Jac is the Jacobian of

the iso-parametric transformation including the weight of the Gauss-point g out of ngaus and

N(i,g) is the shape function of node i out of nnode nodes at Gauss-point g. On the one

hand, when using OpenACC (OPENACC is defined), the loop over elements is parallelized as

DEF_VECT=ivect;. On the other hand, when vectorizing for CPUs, a bunch of VECTOR_SIZE

elements is assembled at the same time, as defined by DEF_VECT=VECTOR_SIZE.

Thus, the parameter VECTOR_SIZE corresponds to the number of elements assembled at the

same time on CPUs, and to the number of elements used to parallelize the OpenACC element

17 OpenACC https://www.openacc.org

https://www.openacc.org/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 17 23.12.2021

#ifdef OPENACC

#define DEF_VECT ivect

use openacc

#else

#define DEF_VECT 1:VECTOR_SIZE

#endif

#ifdef OPENACC

!$acc data create(…) &

!$acc copyin(…)

!$acc parallel loop gang vector default(present)

do ivect = 1,VECTOR_SIZE

#endif

do g = 1,ngaus

Compute properties Prop(DEF_VECT,g)

end do

#ifdef OPENACC

end do

!$acc end parallel loop

!$acc end data

#endif

loop on GPGPUs. This value is on the order of 32-64 on CPUs to trigger vectorization on

superscalar cores, and it is on the order of 105-106 on GPGPUs to guarantee efficient

parallelism.

At present, the same vector size is used for CPU and GPGPU parallelization. Therefore, the

acceleration of the element assembly (in blue) is carried out at the expense of the critical time

step calculation (in red) which saturates the memory bandwidth by using a way too high

VECTOR_SIZE. To overcome this issue, a second VECTOR_SIZE named

VECTOR_SIZE_CPU, which is exclusive to CPU-based subroutines and used in the time step

computation, has been defined in Alya. Note that in the future, this subroutine may be ported

to OpenACC, as it was done for the element assembly, see next section.

3.3.2 Optimization of the element assembly

For the right-hand side assembly, physical properties are required at the Gauss-points of the

elements. In the current version of Alya, these are computed at each time step in a separate

loop, and then gathered from global arrays to element arrays during the assembly. To reduce

the constraining data movement between CPU and GPGPU that is necessary for the assembly

phase, on-the-fly calculations of such properties Prop have been implemented. The

implementation follows the previously described parallelization/vectorization strategy. This

strategy is shown in subsequently displayed algorithm. Corresponding results of a

performance analysis will be reported in next Deliverable D2.3.

3.4 Performance analysis

The following Sec. 3.4.1 and Sec. 3.4.2 report on first performance analysis results for the

optimized version of the time step computation in Alya and on the whole Alya workflow.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 18 23.12.2021

3.4.1 Alya: time step computation

For the performance analysis of the time step computation, the same problem as described in

the previous section is considered. In this simulation, VECTOR_SIZE = 512000 is set, which is

used by both the CPUs and GPGPUs. By changing the vector size of the CPUs to

VECTOR_SIZE_CPU = 64, the times of executions as shown in Figure 3 are obtained.

Figure 3: Alya CPU time after optimization of the time step computation.

Obviously, the optimization leads to a reduction of the time of the calculation of the time step

by a factor of three with respect to the original version, which employed the same

VECTOR_SIZE for both CPUs and GPGPUs. Considering that this operation is performed at

each time step and that usually, for production runs, the simulations take thousands of time

steps to finish, these code modifications will lead to a significant reduction of the total execution

time of the use cases.

3.4.2 Workflow

The goal of using Alya on RTU’s HPC system is to train a Machine Learning (ML) model that

is able to predict wind turbine sink parameters (x,y,z) in such a way that the difference

between the simulation results of Alya and the reference data (label.data) is minimized,

see Figure 4.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 19 23.12.2021

#!/bin/bash

#PBS -N alya_workflow

#PBS -q batch

#PBS -A coe_raise

#PBS -l nodes=1:ppn=64,feature=epyc

#PBS -l walltime=00:30:00

#PBS -j oe

cd $PBS_O_WORKDIR

./alya_workflow.sh

#!/bin/bash

module load gnu8/8.3.0

module load mpi/openmpi-4.1.1

STARTTIME=$(date +%s)

python3 update_scaling.py

python3 update_alya.py

...

Figure 4: Alya workflow for the training phase.

At the current stage, the Alya workflow is tested without involving ML computations. To run the

Alya workflow, the following batch script should be submitted to the HPC’s batch system

(example for running case-075 test case on 8 EPYC cores using PBS):

The content of the file alya_workflow.sh is as follows:

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 20 23.12.2021

The average execution times of the Alya core workflow on RTU’s HPC system are shown in

Table 2 for varying CPU core counts. It should be pointed out that the mesh of this test case

is coarse, i.e., it only contains 41,805 hexahedra. This case has been selected for development

and not for optimization purposes.

CPU cores Execution time Speed-up ratio Parallel efficiency

1 996 1 -

4 437 2.3 57%

8 223 4.5 56%

Table 2: Preliminary performance testing results of the Alya workflow on RTU HPC EPYC nodes using case-

075 test case data.

A second series of tests has been carried out on the Bolund mesh. The performance results

on 16, 32, and 64 CPU cores and shown in Table 3. Obviously, this case is much better suited

for a large number of cores. As expected, the parallel efficiency is higher than in the previous

case.

CPU cores Execution time Speed-up ratio Parallel efficiency

16 408 1 -

32 207 1.97 99%

64 125 3.26 82%

Table 3: Performance testing results of Alya on RTU HPC EPYC nodes using Bolund test case data.

...

cd case/case-075

mpirun ./alya case-075

./alya2pos case-075

cd ../..

python3 read_output.py

ENDTIME=$(date +%s)

echo "It takes $(($ENDTIME - $STARTTIME)) seconds to complete alya

task..."

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 21 23.12.2021

4 Porting and performance analysis of m-AIA from RWTH

The m-AIA code developed at RWTH was ported to GPGPUs on heterogeneous systems such

as the JURECA-DC and JUWELS-BOOSTER modules at JSC, FZJ. The shared memory

OpenMP parallelization of the structured Finite Volume (FV) solver of m-AIA was replaced by

an implementation using the Parallel Standard Template Library (PSTL)18.

The PSTL is an implementation of the C++ standard library algorithms extending the execution

policies by parallel and Single Instruction-Multiple Data (SIMD) optimizations. It offers efficient

support for both a parallel and vectorized execution of algorithms.

A brief overview of m-AIA, a description of the necessary porting environments, and details on

the PSTL implementations are subsequently given in Sec. 4.1, Sec. 4.2 and Sec. 4.3. Section

4.4 presents the results of a performance analysis, juxtaposing the performance of a pure CPU

implementation to the accelerated GPGPU port.

4.1 Overview of m-AIA

The simulation code m-AIA is a multi-physics framework based on C++. It is developed at

RWTH and FZJ provides support by means of further numerical method implementations and

performance engineering. Detailed information on m-AIA can be found in Deliverable D2.6

“Support report” of CoE RAISE. The m-AIA code contains several different modules to solve,

e.g., compressible and incompressible flows, particle-laden flow, aeroacoustics, and moving

boundary problems. The framework operates both on hierarchical Cartesian meshes that are

generated with a massively parallel grid generator as part of m-AIA as well as with structured

curvilinear meshes.

The computation of turbulent boundary layer flows controlled by active wall movements is

performed using the structured FV framework of m-AIA. For this application, the grid generation

is simple, and the structured memory layout allows for a straightforward optimization of the

numerical algorithm. The objective of the performance engineering of m-AIA within Task 2.1 is

to enable m-AIA for GPGPU execution. Therefore, all routines called from the main loop, i.e.,

functions that are called in every iteration step, are ported to a GPU-parallelization-ready

structure. Above all, this involves replacing the original loops over all cells with new PSTL

loops. The details of this porting activity are found below.

4.2 Setting up the environment for porting m-AIA to GPGPUs

The GNU Compiler Collection (GCC)19 from the NVIDIA HPC (NVHPC)20 Software

Development Kit SDK is used to compile m-AIA with GPGPU acceleration. The inter-process

communication is taken care of using the ParaStation MPI21 implementation. The discrete

Fourier transformations required by m-AIA are handled with an external software library, the

Fastest Fourier Transform in the West (FFTW)22. On the JURECA-DC and JUWELS-

BOOSTER heterogeneous systems, NVHPC with ParaStation MPI can be loaded as modules

with the command below:

18 Parallel STL

https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-parallel-stl.html/
19 GCC https://gcc.gnu.org/
20 NVHPC https://developer.nvidia.com/hpc-sdk/
21 Parastation MPI https://docs.par-tec.com/html/psmpi-userguide/index.html
22 FFTW http://www.fftw.org/

https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-parallel-stl.html/
https://gcc.gnu.org/
https://developer.nvidia.com/hpc-sdk/
https://docs.par-tec.com/html/psmpi-userguide/index.html
http://www.fftw.org/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 22 23.12.2021

ml FFTW HDF5 parallel-netcdf CMake

python3 configure.py nvhpc production --enable-pstl=ampere \

--with-hdf5iolib

Loading these modules enables the system to use NVIDIA’s optimized GNU compiler nvc++,

tuned especially for heterogeneous HPC systems. Note that a newer NVHPC/21.9-GCC-

10.3.0 exist in the software stack of the system but requires CUDA23 with a version 11.4 that

is not yet available in the software stack. Parallel I/O is performed using the Hierarchical Data

Format version 5 (HDF524) or the parallel Network Common Data Form (parallel-NetCDF25)

libraries. Furthermore, an in-situ interface has been integrated to connect to in-situ data

processing tools. The compilation process of m-AIA is automated using the CMake software.

The aforementioned software can be loaded on JURECA-DC and/or JUWELS-BOOSTER via:

The configuration of m-AIA with NVHPC and HDF5 support can be performed by issuing the

Python-3.x-based configuration script, via:

This command uses the settings as specified in the cmake file corresponding to the present

system, e.g., the jureca.cmake file, which can be found in

$PATH_TO_MAIA/auxiliary/hosts directory of the m-AIA source code directory. This

modified configuration script is made available for further use as part of a GIT-branch created

for CoE RAISE, which is forked from the main m-AIA development repository, accessed

through an invitation by the RWTH group from the given link26. Further information on how to

create and/or modify this settings file can be found in D2.6. Upon successful configuration, the

make -j command is issued to compile the m-AIA code.

4.3 Optimization of m-AIA via GPGPU porting

In the structured FV module of m-AIA, only a few functions in the main loop occupy most of

the computational time. These functions include the computation of the convective and viscous

flux terms on the governing equations, the time integration of the governing equations using

the Runge-Kutta method, and the exchange of information between computational discretized

domains (namely subdomains) via MPI. In the following, the exemplary modification of PSTL

to the function that computes the convective fluxes is shown, noting that the procedure is

equivalent for all aforementioned functions.

Originally, the convective flux is computed within four nested for-loops, the most outer one

looping over the spatial dimensions (in this case three). All following loops iterate over the

number of computational grid points (namely cells) in the respective direction I,J,K. This

allows these loops to cover the active inner cells and to omit all non-active ghost cells on the

23 CUDA https://developer.nvidia.com/cuda-toolkit/
24 HDF5 https://www.hdfgroup.org/solutions/hdf5/
25 parallel-NetCDF https://parallel-netcdf.github.io/
26 GIT for mAIA with pSTL https://git.rwth-aachen.de/aia/MAIA/Solver/-/tree/structured_pstl

ml NVHPC/21.1-GCC-9.3.0 ParaStationMPI

https://developer.nvidia.com/cuda-toolkit/
https://www.hdfgroup.org/solutions/hdf5/
https://parallel-netcdf.github.io/
https://git.rwth-aachen.de/aia/MAIA/Solver/-/tree/structured_pstl

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 23 23.12.2021

for(MInt dim = 0; dim < nDim; dim++) {

for(MInt k = 1; k < noCellsK-1; k++) {

for(MInt j = 1; j < noCellsJ-1; j++) {

for(MInt i = 1; i < noCellsI-1; i++) {

// extrapolation of variables to cell-surfaces (MUSCL)

…

// computation of convective flux with extrapolated

// cell-surface values (AUSM)

…

}

}

}

}

for(MInt dim = 0; dim < nDim; dim++) {

…

for(MInt I=start1D; I < end1D; ++I) {

// MUSCL

// AUSM

}

}

for(MInt dim = 0; dim < nDim; dim++) {

...

#ifdef MAIA_NVHPC_COMPILER

auto begin_ = thrust::counting_iterator(MInt{start1D});

#else

auto begin_ = std::ranges::views::iota(MInt{start1D}).begin();

#endif

...

boundaries. In an ideal case, the PSTL-parallelized loop should iterate over a large number of

elements, e.g., all cells in all directions. The nested loops, however, inherently lead to an

iteration over small chunks of elements. Below is an example of such a function, where first

the cell-surfaces values are reconstructed using a Monotone Upstream Centered Scheme for

Conservation Laws (MUSCL) type strategy. Then, the cell-surface flux is computed with the

Advection Upstream Splitting Method (AUSM).

Here, the number of cells in a direction is denoted as noCells with I,J,K. This nested loop

structure has been replaced by two loops as it is shown in the code below, i.e., loop unrolling

has been performed.

For each direction, an individual start and endpoint are determined, and the inner loop then

iterates over nearly all cells, omitting only a few unnecessary cells at the very beginning and

at the end. Although this is less efficient than the four nested loops shown above as

start1D>(noCellsI*noCellsJ*noCellsK), since the flux is also computed

unnecessarily for several non-active ghost-cells, this loop structure is easily parallelizable with

PSTL, as seen below:

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 24 23.12.2021

The inner for-loop has been replaced by the for_each_n-loop together with the par_unseq

parameter such that the inner loop content is converted to a lambda function, which can be

executed in parallel and in a non-sequential order on the GPGPU. When using GPGPUs, it is

recommended to employ fewer CPU ranks to allow the PSTL-loop to iterate over several million

elements.

All other for-loops in functions called from the main-loop of the m-AIA structured FV solver

are converted similarly. Due to the acceleration of compute-intensive functions via GPGPU

execution, functions previously consuming only a fraction of the overall main-loop time now

exert a larger weight. That is, every non-PSTL-treated for-loop over all elements being

executed solely on the CPU (such as resetting the right-hand side to zero) turns into the new

execution bottleneck. Therefore, all functions looping over a significant number of elements

need to be PSTL-parallelized to achieve a global speedup.

4.4 Performance analysis of the m-AIA GPGPU port

For the sake of the length of this document, only a few important results are presented in the

following. First, the strong scaling results of m-AIA using only CPUs or the CPU / GPGPU

acceleration on the JUWELS-BOOSTER module are discussed. A Taylor-Green Vortex (TGV)

case with 16.7 million computational elements in three directions is chosen for the benchmarks.

This simulation employs the finite-volume solver of m-AIA and uses a structured computational

mesh. The contour plot of such a TGV simulation’s axial velocity data is presented in Figure 5.

Figure 5: Contour plots of the axial velocity on the middle plane of the TGV with 16.7 million computational

elements.

...

std::for_each_n(std::execution::par_unseq, begin_,

end1D, [=](MInt I) {

// MUSCL

// AUSM

});

}

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 25 23.12.2021

Figure 6 shows the strong scaling results of the TGV simulation using m-AIA compiled with

NVHPC on the JUWELS-BOOSTER module. The computational time per iterative step is

plotted over the number of ranks, i.e., the time for a complete Runge-Kutta loop to integrate

the time derivative of the employed transport equation is measured. More information

regarding this topic can be found in classical textbooks, e.g., in [4]. The relative performance

is computed based on the slowest simulation. Presented are the performances of the pure

CPU computation (denoted as m-AIA CPU) and the GPGPU accelerated computation

(denoted as m-AIA GPU). In an ideal case, the computational domain is decomposed into

subdomains, where each subdomain is attained to a CPU thread. In the current

implementation, each subdomain employs a single GPGPU. Thus, this implementation does

not utilize the complete number of available CPU threads. For example, a JUWELS-BOOSTER

node consists of two CPUs with a total of 48 CPU hardware threads and 96 Simultaneous

Multithreading (SMT) threads. To use all resources efficiently, the computational domain

should be subdivided into 96 subdomains. As each node features four GPGPUs, the current

implementation makes only use of four threads yielding unoccupied 92 SMT threads. This

Figure 6: Performance of m-AIA to simulate a TGV case with 16.7 million elements on the JUWELS-

BOOSTER module using only CPUs (m-AIA CPU and m-AIA ideal) and both CPUs with GPGPU acceleration

(m-AIA GPU). The m-AIA CPU in the top row employs the same number of threads as the m-AIA GPU variant.

The ranks denote the number of subdomains, i.e., each rank uses a single SMT thread with a single GPGPU.

The bottom row utilizes all the SMT threads (in this case 96). Note the bottom row has the number of nodes

on the x-axis.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 26 23.12.2021

limitation is a result of the current implementation, where each subdomain can only utilize a

single SMT thread and a single GPGPU. Note that developments for co-execution, i.e., using

both resources CPUs and GPGPUs more efficiently in a concurrent manner, are ongoing. For

a fair comparison, the results of the m-AIA CPU case use only four CPU threads, noting that

allocating multiple SMT threads to a single subdomain is currently not possible when GPGPU

acceleration is utilized.

It is evident from Figure 6 that employing the GPGPU acceleration greatly reduces the

computational time. The relative performance plot depicted in Figure 6b reveals the m-AIA

GPU version to be at least a factor of 10 faster than the conventional m-AIA CPU version when

the number of CPU threads is set equally. An additional analysis is performed by comparing

the GPGPU accelerated m-AIA GPU code with the standard m-AIA implementation that utilizes

96 SMT threads per node, i.e., 96 subdomains per node. The latter is denoted as m-AIA ideal.

Utilizing all of the CPU threads in a m-AIA CPU execution (m-AIA ideal) greatly reduces the

overall computation time, see Figure 6c. The time-to-solution using the GPGPU acceleration

is, however, still shorter. The relative performance of m-AIA with GPGPU acceleration to m-

AIA with pure CPU computation utilizing all the CPU threads shows 50% better performance,

see Figure 6d. The power consumption using these additional GPGPUs is yet to be

investigated. Different co-execution strategies to utilize the unused CPU threads are currently

being discussed.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 27 23.12.2021

5 Porting and performance analysis of AI technologies

One of the goals of CoE RAISE is to couple the aforementioned CFD / multi-physics codes to

AI frameworks to achieve intertwined and efficient simulation, surrogate and modeling, and

data processing workflows. This section first gives an overview of the various datasets used in

ML applications in Sec. 5.1. Section 5.2 discusses strategies of porting such AI frameworks to

heterogeneous systems such as the JUWELS, JURECA, and the DEEP-EST systems at the

Jülich Supercomputing Centre (JSC), HAWK at the High-Performance Computing Center

Stuttgart (HLRS), PizDaint at the Swiss National Supercomputing Center (CSCS), and the CT-

AMD system at BSC. The presentation of these strategies is complemented by the results of

performance analyses of the AI frameworks in Sec. 5.3.

5.1 Overview of datasets used in ML benchmarks

For the sake of the length of this document, only three important datasets are introduced in

this section. The first two datasets ImageNet and modified National Institute of Standards and

Technology (MNIST) are two famous datasets freely available for ML research. The third

dataset is an example from a compute-driven use-case introduced in Task 3.1 “AI for turbulent

boundary layers”. A brief overview of these datasets is given below.

ImageNet: ResNet

The ImageNet dataset was first introduced as a benchmarking dataset at the ImageNet Large

Scale Visual Recognition Challenge in 2012 [5]. It contains 1,281,167 images in the training

set and 50,000 images in the validation set. In total, there are 1,000 classes that these images

are assigned to. The main goal of the challenge is to train algorithms on the training set to

accurately predict the classes of the images in the validation set. Uncompressed, the total

dataset has a size of approximately 300 GB. Over the past few years, it has become the most

used benchmarking dataset for computer vision applications.

Convolutional Neural Networks (CNNs) have shown great performance on the task of

predicting the ImageNet classes. From the original structure presented in the AlexNet [6],

continuous improvements were made, yielding the ResNet architecture [7]. Residual Nets

feature so-called short skip connections that omit some layers, making it possible to train

deeper networks that would otherwise suffer from degradation [7]. The original ResNet50

architecture has 50 layers of neurons and is despite recent advancements in the field of

Transformers still one of the standard benchmarking architectures in computer vision.

MNIST: CNN

The modified National Institute of Standards and Technology (MNIST) dataset [8] consists of

a collection of handwritten digital images used for character recognition. This dataset is an

extension to the original dataset available from the National Institute of Standards and

Technology (NIST)27. The dataset consists of 60,000 example digital images for training and

10,000 examples for testing purposes. Each example image is centered and represented in

fixed 28x28 black and white pixels. The grayscale levels are introduced to each image using

anti-aliasing techniques.

Many ML techniques have been tested to train this dataset, such as linear classifiers, k-nearest

neighbors, boosted, stumps, non-linear classifiers, support vector machines, neural nets, and

27 NIST https://www.nist.gov

https://www.nist.gov/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 28 23.12.2021

CNNs, where an overview can be found in [8]. As this dataset has proven to be useful in testing

ML performance, this work uses this dataset for CNN benchmarks.

ATBL: Auto-encoder

The Actuated Turbulent Boundary Layer (ATBL) dataset is generated in the compute-driven

use-case Task 3.1 “AI for turbulent boundary layers”. Briefly, the training dataset is generated

using a high-resolution large-eddy simulation (LES) approach with a moving geometry to

create oscillating boundary layers, which reduces the friction drag of the turbulent boundary

layer. Further information on the geometrical setup, the simulation method, and the first results

can be found in Deliverable 3.1.

To train networks via ML, an 8.3 TB dataset is extracted from the LES of the ATBL. Moreover,

a smaller dataset is generated based on this large dataset for development purposes. This

smaller dataset consists of 21 GB of data for training and additional 1.2 GB of data for testing

purposes (a total of 22.2 GB).

The initial ML framework to be tested is a Convolutional Auto-Encoder (CAE). CAEs are

unsupervised neural network models that summarize the general properties of the input

dataset in fewer parameters while learning how to reconstruct the input again after

compression, namely decompression [9]. Due to their simple implementation, CAEs are widely

used for reducing the dimensionality of any dataset. More information on this topic can be

found in Deliverable D2.14, where the details are omitted for brevity.

Training a CAE with large datasets is computationally challenging and can only be performed

efficiently when parallelization strategies are exploited. A common parallelization strategy is to

distribute the input dataset to separate GPGPUs, where the trainable parameters between the

GPGPUs are exchanged occasionally. This method is called distributed data parallelization

and greatly reduces the training time. Depending on the data exchange rate between the CPUs

and/or GPGPUs, this type of parallelized training can scale to many workers of CPUs or

GPGPUs. Currently, the GPGPUs require the CPUs to access the input data. Since the data

needs to be transferred from the CPUs to the GPGPUs, the performance of the CPUs becomes

the limiting factor in CAE training.

It should be noted that CAE training can be performed using only CPUs. It is, however,

preferred to run this on GPGPUs as their architecture allows for much faster ML-typical matrix-

matrix operations. This way, in slow training times can be avoided.

The only drawback of the data parallelization strategy is the loss in training accuracy that is

caused by the increased batch sizes. As the input dataset is distributed to separate workers,

the total batch size linearly increases by the number of workers - even though the batch size

per worker remains fixed. That is, in a data-parallel training with a large number of workers,

the batch size inevitably becomes large, which leads to reduced training accuracies. This limits

the linear scaling performance of the CAE training and renders the training accuracy an

important factor when investigating the scaling performance of a CAE training.

The loss of training accuracy and how to cope with it has intensively been addressed in the

literature [10,11,12]. Tuning other hyperparameters such as the learning rate, batch size per

worker, and the number of epochs can be adjusted to keep the training accuracy at a certain

level when the number of workers is increased, as done in previous studies [10,11,12].

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 29 23.12.2021

5.2 Porting existing ML frameworks to heterogeneous systems

This part focuses on porting existing ML frameworks to different heterogeneous systems. A

change in the structure of these frameworks is not required, as these frameworks are already

optimized for both CPU and/or GPGPU. The CAEs using distributed data parallelization

methods are developed with the open-source framework PyTorch 1.10.028. There are several

frameworks that integrate distributed data parallelization to PyTorch, where the most popular

ones are ported and investigated in this project:

● Distributed Data Parallel (DDP) module as part of a PyTorch package [13]

● Horovod distributed training package, developed by Uber [14]

● Helmholtz Analytics Toolkit HeAT, a project of the Helmholtz association [15]

● DeepSpeed, developed by Microsoft [16]

At a macroscopic scale, these distributed data parallel frameworks operate similarly. However,

at a microscopic scale, each framework is optimized differently leading to different scaling

performances and training accuracies for individual cases.

In the following, a brief overview of the used frameworks is given in Sec. 5.2.1. Subsequently,

the necessary porting of these methods is exemplarily explained for the systems JURECA in

Sec. 5.2.2. Finally, general initialization methods are presented in Sec. 5.2.3 along with a

specific configuration for Rudens at RTU. It should be noted that porting these frameworks to

further systems is similar.

5.2.1 A brief overview of used ML frameworks

PyTorch Distributed Data Parallel (PyTorch-DDP) [13]

PyTorch is an open-source ML framework, mainly developed by Facebook AI Research. The

PyTorch-DDP module features a built-in way to run distributed training of neural networks on

multiple workers. Similar to Horovod, the PyTorch-DDP library also uses an AllReduce

operation for gradient reduction. Additionally, the gradients are not synchronized individually.

Instead, several gradients are collected in ‘buckets’ and are only communicated when the

buckets are sufficiently filled. This reduces the total number of communication operations. In

contrast to Horovod, PyTorch-DDP uses a simple heuristic for determining the reduction order

on a local worker level: The gradients are bucketed in the reverse order of their computation

in the forward pass of the network. This is motivated by the fact that the last layers of a network

are likely the first to finish computation during the backward pass. To further speed up the

training process, PyTorch-DDP offers a no_sync option to only execute an AllReduce

operation every few iterations.

Horovod [14]

Horovod is an open source distributed Deep Learning (DL) library originally developed by Uber

for TensorFlow. It supports most other DL frameworks such as PyTorch, TensorFlow29,

Keras30, and Apache MXNet31. Horovod can be included into existing training script with only

a few lines of code changes rendering it a popular choice when it comes to distributed DL. It

was one of the first libraries to make use of a decentralized Ring_AllReduce scheme for the

28 PyTorch https://pytorch.org/
29 TensorFlow https://www.tensorflow.org
30 Keras https://keras.io
31 MXNet https://mxnet.apache.org

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
https://mxnet.apache.org/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 30 23.12.2021

ml GCC ParaStationMPI Python

synchronization of the gradients, whereas most of the other frameworks at the time were using

a centralized parameter server. On a local worker level, Horovod handles communication

operations asynchronously via a separate background thread. To ensure consistency across

all workers on a global scale, a consistency protocol is enforced. In literature, it has been

shown that the combination of background thread and consensus protocol leads to huge

communication overhead, acting as a drain on performance [17].

HeAT [15]

The Helmholtz Analytics Toolkit HeAT is an open-source distributed DL library developed by

partners from Deutsches Zentrum für Luft- und Raumfahrt - German Aerospace Center (DLR),

FZJ, and Karlsruhe Institute of Technology (KIT). HeAT is a flexible and seamless open-source

software for high-performance data analytics and ML. It provides highly optimized algorithms

and data structures for tensor computations using CPUs, GPGPUs, and distributed cluster

systems using MPI for communication. The objective of HeAT is to fill the gap between data

analytics and ML libraries with a strong focus on single-node performance on the one hand,

and traditional HPC on the other [12].

DeepSpeed [16]

DeepSpeed is an open-source distributed DL library originally developed by Microsoft. The

library is designed to reduce computational effort and memory usage, and to train large

distributed models with better parallelism on existing computer hardware. DeepSpeed is

optimized for low latency, high throughput training. It includes the Zero Redundancy Optimizer

(ZeRO)32 for training models with 100 billion or more parameters, especially useful for CNNs

and Natural Language Processing (NLP).

5.2.2 Porting ML frameworks

Porting these frameworks to heterogeneous systems is similar. Therefore, necessary porting

steps are in the following exemplarily shown on the DC module of the JURECA system at FZJ.

This system consists of 192 accelerated compute nodes, each equipped with dual AMD EPYC

7742 CPUs and four NVIDIA A100 GPU - a total of 24,576 cores and 768 GPGPUs. The nodes

are connected to each other with dual InfiniBand HDR switches.

The distributed data parallel frameworks require the MPI library and Python with a version 3.x.

In case the ML training is to be accelerated with GPGPUs, either CUDA or ROCm33 libraries

are required, depending on the GPGPU’s manufacturer. On the JURECA-DC system, GCC,

Parastation MPI, CMake, and Python34 frameworks are available to the user as modules, and

loaded as:

This command implicitly loads GCC 10.3, ParaStationMPI 5.4.10-1, Python 3.8.5, CUDA 11.3

frameworks, and explicitly loads UCX 1.10.135, CUDA 11.3 and the cuDNN 8.2.1.32 libraries36.

32 ZeRO https://www.deepspeed.ai/tutorials/zero/
33 ROCm https://github.com/RadeonOpenCompute/ROCm
34 Python https://www.python.org/
35 UCX https://openucx.org/
36 cuDNN https://developer.nvidia.com/cudnn

https://www.deepspeed.ai/tutorials/zero/
https://github.com/RadeonOpenCompute/ROCm
https://www.python.org/
https://openucx.org/
https://developer.nvidia.com/cudnn

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 31 23.12.2021

ml NCCL

python3 -m venv <env_name>

source <env_name>/bin/activate

pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 \

torchaudio===0.10.0 \

-f https://download.pytorch.org/whl/torch_stable.html

export HOROVOD_GPU=CUDA

export HOROVOD_GPU_OPERATIONS=NCCL

export HOROVOD_WITH_PYTORCH=1

pip3 install horovod

These modules alone satisfy the basic installation of the distributed data parallel frameworks.

However, to enable all the framework options such as the NCCL communication backend37,

the following module needs to be loaded:

This provides the user with NCCL 2.10.3 with CUDA support. Each parallel framework can be

compiled on JUWELS from the source code. However, the Python package installer pip38 or

the open-source package management system Conda39 greatly reduce the complexity to

compile such frameworks. Alternatively, a slightly older PyTorch 1.8.1 is available as a module

on the system. In the following, pip is chosen for the sake of simplicity. Initially, it is wise to

create a Python environment with a name <env_name> and source it:

This keeps the management of the compiled frameworks simple. The first required library is

PyTorch, which can be compiled with these commands (noting the installed CUDA version of

11.3 on the system):

The PyTorch framework already contains all the required libraries for the DDP module to run,

i.e., no additional compilation of this module is necessary.

The second distributed data parallelization framework Horovod can be compiled with these

commands:

The first three environmental variables setup CUDA for GPGPUs, NCCL for communication

backend between workers, and PyTorch for the host language. It should be noted that the first

two flags are only necessary for GPGPU accelerated training, and for AMD GPGPUs, ROCm

replaces CUDA and RCCL40 replaces NCCL.

The third distributed data parallelization framework HeAT can be compiled with these

commands:

37 NCCL https://developer.nvidia.com/nccl
38 pip https://pypi.org/project/pip/
39 Conda https://docs.conda.io/
40 RCCL https://github.com/ROCmSoftwarePlatform/rccl

https://download.pytorch.org/whl/torch_stable.html
https://developer.nvidia.com/nccl
https://pypi.org/project/pip/
https://docs.conda.io/
https://github.com/ROCmSoftwarePlatform/rccl

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 32 23.12.2021

ml HDF5 parallel-netcdf

export DS_BUILD_FUSED_ADAM=1

export DS_BUILD_UTILS=1

pip3 install DeepSpeed

pip3 install Pillow pyparsing python-dateutil matplotlib h5py \

Pytorch-nlp

The optional arguments hdf5 and netcdf denote the input and output capabilities of HeAT.

These arguments are important since most of the input dataset is stored in HDF5 or parallel-

NetCDF formats. The I/O libraries need to be preloaded by issuing:

The final distributed data parallelization framework DeepSpeed can be compiled with these

commands:

The first two environmental variables are responsible to compile helper utilities of DeepSpeed

required during CAE training. For pre- and post-processing the data, and for advanced CNN

commands (such as three-dimensional convolutions), the additional Python libraries Pillow41,

pyparsing42, python-dateutil43, matplotlib44, h5py45, and pytorch-nlp46 need to be included to the

Python environment by

5.2.3 Initialization of used frameworks

The following paragraph, describes the general approach on the JURECA-DC system to

initialize ML frameworks. Next paragraph provides examples on how to perform parallel

training using PyTorch-DDP on the Rudens system at RTU.

Initialization of ML frameworks on JURECA-DC at FZJ

These four distributed data parallelization frameworks are initialized using various methods.

For the DDP framework, an elastic launch framework that is a part of the PyTorch library is

used (previously known as distributed launch). This elastic launch framework enables

distributed training jobs to be executed on multiple workers on a single or multiple-node, where

in case of a failed worker or node, a new worker replaces the faulty one. Unfortunately, this

type of initialization is not favored by the slurm47 job scheduler (typically found in many HPC

systems) as the user must reserve the workers and nodes in advance. For this purpose, the

41 Pillow https://pillow.readthedocs.io/en/stable
42 pyparsing https://github.com/pyparsing/pyparsing
43 python-dateutil https://dateutil.readthedocs.io/en/stable/
44 matplotlib https://matplotlib.org
45 h5py https://www.h5py.org
46 pytorch-nip https://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html
47 Slurm https://slurm.schedmd.com/

pip3 install heat[hdf5,netcdf]

https://pillow.readthedocs.io/en/stable
https://github.com/pyparsing/pyparsing
https://dateutil.readthedocs.io/en/stable/
https://matplotlib.org/
https://www.h5py.org/
https://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html
https://slurm.schedmd.com/

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 33 23.12.2021

torchrun \

--nnodes=$SLURM_NNODES \

--nproc_per_node=$SLURM_GPUS_PER_NODE \

--rdzv_id=$SLURM_JOB_ID \

--rdzv_backend=c10d \

--rdzv_endpoint=$SLURMD_NODENAME.jureca:<free_TCP_port> \

<training_Script>.py (arguments)

python3 -m deepspeed.launcher.launch \

--node_rank $SLURM_PROCID \

--master_addr $SLURMD_NODENAME \

--master_port <free_TCP_port> \

--world_info <list_of_workers_nodes_in_Base64> \

<training_Script>.py (arguments) \

--deepspeed_mpi \

--deepspeed_config <DS_config.json>

sysN=$(eval "scontrol show hostnames")

for i in $sysN; do

x+=\"$i\":[$CUDA_VISIBLE_DEVICES],

done

list_of_workers_nodes_in_Base64=`echo {${x::-1}} | base64 -w 0`

python3 -u <training_Script>.py

initialization without elasticity can be used, as given below with the help of slurm’s environment

variables:

Several keyword arguments must be provided to the torchrun framework, such as the

number of nodes, the number of GPGPUs per node, a unique job identification number, the

used collective communication library c10d48, and the host (or master) node address with a

free Transmission Control Protocol (TCP) port, in respective order.

The DeepSpeed framework utilizes a similar initialization method as the PyTorch-DDP

framework, i.e., the deepspeed.launcher framework, where an example is given below:

Here, the deepspeed.launcher framework requires several keyword arguments such as

the rank of the node, the host (or master) node address, a free TCP port of the host (master)

node, and the list of the workers and nodes in Base64 format. The latter two arguments tell

the DeepSpeed framework to run in parallel and provide it with a special configuration file

<DS_config.json>. The --world_info argument with the list of the workers and nodes

in Base64 format can be defined in the batch script used on the JURECA system by:

The other two distributed data parallelization frameworks Horovod and HeAT do not require a

special initialization, i.e., the ML training scripts can simply be executed by the command:

48 c10d https://pytorch.org/docs/stable/distributed.html

https://pytorch.org/docs/stable/distributed.html

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 34 23.12.2021

#!/bin/sh

#PBS -N pytorch_multinode_job

#PBS -q batch

#PBS -A coe_raise

#PBS -l nodes=2:ppn=2:gpus=2,feature=v100

#PBS -j oe

pbsdsh -u -v "$PBS_O_WORKDIR/pytorch_worker.sh"

#!/bin/sh

module load cuda/cuda-10.2 conda

source activate raise_conda_env

cd $PBS_O_WORKDIR

python3 <ddp_gpu.py> > <log_file>

Example CAE training scripts using various datasets such as MNIST, Image Net, and the ATBL

datasets are documented and can be found in the master branch of a GIT repository49. This

repository also contains machine-specific batch scripts for the heterogeneous systems

JURECA, JUWELS, DEEP-EST, CT-AMD, and automated compilation scripts for the

distributed data parallelization frameworks mentioned above.

Using PyTorch-DDP on the Rudens system at RTU HPC

To reduce the training time, the PyTorch models are mostly trained on multiple GPGPUs within

a single node or across different nodes. An example to run PyTorch-DDP on two nodes, each

having two Tesla V100 Volta GPGPU, using the batch script pytorch_multinode.sh and

helper script pytorch_worker.sh is given below. The batch script

pytorch_multinode.sh executes (spawns) the PyTorch-DDP code on all defined nodes

under the control of PBS. The content of pytorch_multinode.sh is:

Several keyword arguments for qsub are required, such as the following:

● PBS -N - declares the name for the job.

● PBS -q - defines the destination of the job. The destination names a queue, a

server, or a queue at a server.

● PBS -A - defines the project account to allocate the computational resources.

● PBS -l - denotes the requested computational resources.

● PBS -j - declares if the standard error stream of the job will be merged with the

standard output stream of the job. An option argument value of oe directs that the two

streams will be merged, intermixed, as standard output.

The batch script pytorch_multinode.sh calls the helper script pytorch_worker.sh on

each node for PyTorch-DDP to be executed on that node. The content of

pytorch_worker.sh is:

49 GIT trainig scripts https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc.git

https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc.git

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 35 23.12.2021

module load cuda/cuda-10.2 conda

conda activate

conda install -y tempfile pytorch torchvision torchaudio /

cudatoolkit=10.2 -c Pytorch

#!/usr/bin/env python

import os, sys, tempfile, torch

import torch.distributed as dist

import torch.nn as nn

import torch.optim as optim

import torch.multiprocessing as mp

from torch.nn.parallel import DistributedDataParallel as DDP

def setup(rank, world_size):

os.environ['MASTER_ADDR'] = 'localhost'

os.environ['MASTER_PORT'] = '12355'

initialize the process group

dist.init_process_group("nccl", rank=rank,

world_size=world_size)

def cleanup():

dist.destroy_process_group()

class NeuralNetModel(nn.Module):

Model implementation

...

def run_model(rank, world_size):

print(f"Running DDP model on rank {rank}.")

setup(rank, world_size)

create model and move it to GPU with id rank

model = NeuralNetModel().to(rank)

ddp_model = DDP(model, device_ids=[rank])

implementation of model optimization

...

clean the process group

cleanup()

...

The script pytorch_worker.sh sources Conda environment that includes required Python

libraries. Creating the Conda environment can be performed simply by initiating the commands

below.

The content of the exemplary training script ddp_gpu.py is:

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 36 23.12.2021

qsub -V <pytorch_multinode.sh>

Finally, the job is executed on multiple nodes by submit the batch script to PBS, via:

The flag -V above for the qsub command declares that all environment variables in the qsub

commands are exported to the batch job.

5.3 Performance analysis of existing ML frameworks on heterogeneous

systems

Figure 7: Performance of the PyTorch-DDP framework for training on a small version of the ATBL dataset

on the JUWELS-BOOSTER. Each node consists of four NVIDIA A100 GPGPUs. Depicted are the compute

time over the number of nodes (a), the strong-scaling performance (b), the code efficiency with increasing

node number (c), and the corresponding training error (d). The configurable hyperparameter learning rate

is linearly scaled. The black dashed lines represent the ideal scenario. Note the exponential scales.

...

def run_multi_model(demo_fn, world_size):

mp.spawn(demo_fn, args=(world_size,), nprocs=world_size,

join=True)

if name == " main ":

n_gpus = torch.cuda.device_count()

assert n_gpus >= 2,

f"Requires at least 2 GPUs to run, but got {n_gpus}"

world_size = n_gpus

run_multi_model(run_model, world_size)

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 37 23.12.2021

This part focuses on the scaling performances of various ML frameworks that are ported to

different heterogeneous systems without modifying the original code. For the sake of the length

of this document, only a few important results are presented in this section. Initially, the strong

scaling results of the PyTorch-DDP framework on the JUWELS system are discussed.

Figure 7 shows the performance of the PyTorch-DDP framework for training on the small

version of the ATBL dataset (21 GB) on the JUWELS-BOOSTER system. To reduce the

computational time, a total of 10 training epochs E=10 is performed. The batch size per

GPGPU is set to B=100. The hyperparameter learning rate L is linearly scaled with the number

of nodes. The learning rate is set to L=4e-5 and L=0.02 for a single and 512 nodes. The training

error is adopted from the work by Jin et al. [18] and is computed as the difference of values

between the input and reconstructed data. The CAE training employs the Adam optimization

algorithm [19] with a weight decay parameter of W=0.003.

Figure 8: Performance of the existing distributed data parallel frameworks for training on a small version

of the ATBL dataset on the CTE-AMD system at BSC. Each node consists of two AMD MI50 GPGPUs.

Depicted are the compute time over the number of GPGPUs (a), the strong-scaling performance (b), the

corresponding training error (c), the code efficiency under increasing GPGPU-count (d), the relative speed-

up (e), and the relative square root of the training error (f). The configurable hyperparameters for each

framework are fixed. The black dashed lines represent the ideal scenario. Note the exponential scales.

Figure 8 shows the performance of the existing distributed data parallel frameworks for training

on a small version of the ATBL dataset (21 GB) on the CTE-AMD system, which employs the

ROCm and RCCL libraries instead of the CUDA and NCCL libraries that are necessary on

NVIDIA-based systems. For each framework, a total of 10 epochs E=10 are performed for the

sake of computational time, the batch size per GPGPU is set to B=96, and the hyperparameter

learning rate is L=0.01. Similarly, the CAE trainings here employ the Adam optimization

algorithm [19] with a weight decay parameter of W=0.003.

From Figure 8a, it is obvious that the HeAT framework is slightly faster than the rest of the

frameworks, especially evident when more than two GPGPUs are employed for the CAE

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 38 23.12.2021

training. In contrast, Horovod performs worst among the compared frameworks. As

DeepSpeed shares most of the source code with the PyTorch-DDP framework, these two

frameworks perform quite similarly. Except for Horovod, all investigated frameworks show a

good scaling performance, see Figure 8b. As shown in Figure 8d, HeAT achieves an efficiency

value of e=0.89 when 32 GPGPUs are used, e=0.83 is the efficiency value achieved by DDP

and DeepSpeed. The Horovod framework only achieves an efficiency of e=0.62 on 32

GPGPUs. Interestingly, the efficiency value of Horovod sharply reduces down to e=0.81 when

two nodes (or four GPGPUs) are employed. This indicates that Horovod might be experiencing

node-based communication issues. Figure 8e shows the relative speed-up in percentiles,

based on the slowest framework, indicating how much scaling performance could be gained

by employing alternative distributed data parallel frameworks. Here, HeAT is evidently

computationally faster and scales better to larger amounts of workers than the compared

distributed data parallel framework.

The training error is computed as presented in [18]. Even though the scaling performance of

Horovod is not satisfactory, a lower training error is achieved with this framework, see Figure

8c. Here, HeAT also achieves similar training errors. However, both PyTorch-DDP and

DeepSpeed show larger training errors compared to HeAT and Horovod. Figure 8f shows the

square rooted relative training error between the considered distributed data parallel

frameworks in percentiles, based on the framework with the largest training error, i.e., the

framework with the lowest accuracy shows the highest percentile. It can be seen that Horovod

achieves the best relative square rooted training error on 32 GPGPUs. HeAT is, however, not

far behind with similar training error values. It can be concluded that HeAT clearly outperforms

the other distributed data parallel framework due to its scaling performance and excellent

accuracies, noting that these results are performed on the CTE-AMD system.

Figure 9: Performance of the PyTorch-DDP framework for training on a small version of the ATBL dataset

on the CTE-AMD, DEEPEST, and JUWELS-BOOSTER systems. The CTE-AMD machine is equipped with

AMD MI50 (red), the DEEP-EST system with NVIDIA V100 (blue), and the JUWELS-BOOSTER with NVIDIA

A100 GPGPUs (green). Depcicted are the compute time over the number of GPGPUs (a) and the relative

performance (b). Note the exponential scales.

Figure 9 shows the performance of the PyTorch-DDP for training on the small version of the

ATBL dataset on the three different systems, each with different GPGPU-kinds.The CTE-AMD

system is equipped with AMD MI50, the DEEP-EST system withNVIDIA V100, and JUWELS-

BOOSTER with NVIDIA A100 GPGPUs, see Deliverables D2.5 and D2.6. That is, three

GPGPU types are cross-compared. For each test, a total of 10 epochs E-10 are performed for

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 39 23.12.2021

the sake of computational time, the batch size per GPGPU is set to B=96, and the

hyperparameter learning rate to L=0.01. Again, the CAE trainings employ the Adam

optimization algorithm [19] with a weight decay parameter of W=0.003. It should be noted that

these systems use slightly different node-based InfiniBand (IB) connections - the slowest being

the DEEP-EST system with InfiniBand-Enhanced Data Rate (IB-EDR) connection.

The PyTorch-DDP framework shows similar scaling performances across all systems, shown

in Figure 9 (not shown but marginally visible from computational times in Figure 9a - the

training times reduce in similar order at each system). Figure 9 also shows the relative

performance in percentiles, based on the slowest GPGPU, indicating how much performance

could be gained by switching the systems. The new generation NVIDIA GPGPU A100 is

approximately 2.3 times faster than the previous generation V100s. The performance of the

AMD MI50 GPGPUs is close to that of the A100s, but 15% slower. As sole performance values

are meaningless, further investigations considering the energy consumption are planned soon.

Table 4: Performance of Horovod and PyTorch-DDP on the JUWELS-BOOSTER system; U: percentage of

average GPGPU usage at training in %; e: parallel efficiency; T: run time in seconds; DT: data throughput

in images per second.

To enable a more general comparison, the Horovod and PyTorch-DDP frameworks are also

evaluated on the default ImageNet benchmark, training a ResNet50 architecture on the dataset

on up to 1,024 GPGPUs on the JUWELS-BOOSTER system. The run time of training the

network for E=90 epochs with a batch size of B=64 per GPGPU is measured. The data

throughput (images per second) is shown in Figure 10 (left). Overall, PyTorch-DDP performs

much better than Horovod and achieves a higher data throughput on all instances with an

increasing difference under an increasing number of GPGPUs. On 1,024 GPGPUs, PyTorch-

DDP finishes its training in 203s and is thus more than twice as fast as Horovod, which requires

488s for the same task. This is also evident from the plot of the parallel efficiency e in Figure

10 (right). It is confirmed that PyTorch- DDP scales almost perfectly with e > 0.96 up to 1,024

GPGPUs. In contrast, the efficiency of Horovod already drops below e = 0.90 at 8 GPUs. The

drop in efficiency continues up to 256 GPGPUs, before a small increase appears at 512 GPUs,

followed by a drop again at 1,024 GPUs. The general low scaling performance of Horovod is

likely due to the consensus protocol and master thread that Horovod has to run in the

background. Exact numbers are reported in Table 4. Apparently, Horovod is not able to fully

utilize the GPGPUs, as it never reaches more than ~70% utilization while PyTorch-DDP utilizes

more than ~80% for most runs.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 40 23.12.2021

Figure 10: Performance of Horovod and PyTorch-DDP on the ImageNet benchmark on the JUWELS-

BOOSTER module for an increasing number of GPGPUs G. Left: Comparison of the data throughput DT in

images i per second. Right: Comparison of the parallel efficiency e.

As the batch size B increases with the number of workers, a drop in validation accuracy can

be expected once B passes a certain threshold. Figure 11 shows that this drop occurs at a

B=16,000 for Horovod and already at B=2,000-4,000 for PyTorch-DDP. It is interesting to note

that overall Horovod retains a better validation accuracy than PyTorch-DDP.

The results clearly show the superiority of the PyTorch-DDP framework over Horovod in terms

of scalability. With a parallel efficiency of over 0.96 across all instances, PyTorch-DDP is close

to the best-case scenario of linear scaling. However, the validation accuracy suffers from this

approach and the training already diverges at medium-sized batch sizes. It is hence

recommended to use PyTorch-DDP if scalability is in focus and large HPC systems are

employed, and to use Horovod if high accuracy is demanded.

Figure 11: Accuracy of the ResNet50 on the validation set V of ImageNet over the overall batch size B.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 41 23.12.2021

6 Summary and conclusions

Several activities with respect to porting simulation and AI codes to different architectures and

systems, and code optimizations were carried out in the first phase of the project. This included

both simulation codes used in WP3, namely Alya and m-AIA, and a series of ML frameworks.

The benefit of the optimizations was demonstrated through performance analysis that were

performed on various supercomputers on different Tiers.

Alya was ported to the Tier-0/1 system JUWELS-BOOSTER at FZJ and to the Tier-2 system

Rudens at RTU. There, first performance results were obtained.

For RWTH’s code m-AIA, the computational times were drastically reduced via a structural

change of the source code. The overhead of the computationally expensive subroutines was

transferred from CPUs to GPGPUs. For this purpose, the loops with OpenMP acceleration

were replaced with Parallel Standard Template Library (PSTL) variants. The performance of

the GPGPU-accelerated m-AIA code was cross-compared with the original pure CPU

implementation of the code. This performance analysis of m-AIA was performed on the

JURECA-DC and JUWELS-BOOSTER supercomputers at FZJ.

Existing ML frameworks were ported to RTU’s Rudens system, to BSC’s CTE-AMD machine,

and to FZJ’s DEEP-EST, JURECA-DC, and JUWELS-BOOSTER systems without any

fundamental structural code changes. That is, each ML framework was ported to the

heterogeneous systems by issuing simple commands. Therefore, the focus of the activities

was on the analysis of the relative and scaling performance on different heterogeneous

systems. With the help of an analysis of the relative performance, cross-comparisons were

possible, whereas scaling analyses assessed the performance of these frameworks on

different heterogeneous systems. From these analyses, it was evident that each of the

considered frameworks could achieve either exceptional scaling performance or good training

accuracy. It was found that blindly adding more GPGPUs to the ML training indeed reduced

the training times. This was, however, accompanied by unacceptable training accuracies due

to very large total batch sizes. A careful analysis of each ML framework should be performed

to find a balance between the scale of the training (number of workers) and training accuracy.

This is part of the ongoing work.

All past and ongoing porting and optimization activities aim at bringing complete use-case-

specific workflows including AI components to next-generation supercomputers. As the HPC

landscape in Europe is continuously changing, more porting and optimization activities are

planned for the second year, likely on the largest supercomputers. They will be reported in the

next Deliverable D2.3 of this series of Deliverables in project month M24.

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 42 23.12.2021

References

[1] Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Arís, R., … Valero,

M. (2016). Alya: Multiphysics engineering simulation toward exascale. Journal of

Computational Science, 14, 15–27. https://doi.org/10.1016/j.jocs.2015.12.007

[2] Borrell, R., Dosimont, D., Garcia-Gasulla, M., Houzeaux, G., Lehmkuhl, O., Mehta, V.,
… Oyarzun, G. (2020). Heterogeneous CPU/GPU co-execution of CFD simulations on
the POWER9 architecture: Application to airplane aerodynamics. Future Generation
Computer Systems, 107, 31–48. https://doi.org/10.1016/j.future.2020.01.045

[3] Lehmkuhl, O., Houzeaux G., Owen, H., Chrysokentis, G. and Rodríguez, I. (2019). A
low-dissipation finite element scheme for scale resolving simulations of turbulent flows.
Journal of Computational Physics, 390, 51-65. https://doi.org/10.1016/j.jcp.2019.04.004

[4] Poinsot, T., Veynante, D., (2005). Theoretical and numerical combustion. RT Edwards,
Inc. https://doi.org/10.1016/j.combustflame.2005.11.002

[5] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

[6] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84–90.
https://doi.org/10.1145/3065386

[7] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

[8] Li Deng. (2012). The MNIST Database of Handwritten Digit Images for Machine Learning
Research [Best of the Web]. IEEE Signal Processing Magazine, 29(6), 141–142.
https://doi.org/10.1109/MSP.2012.2211477

[9] Gallinari, P., Lecun, Y., Thiria, S. and Soulie, F.F. (1987). Mémoires associatives
distribuées: une comparaison (distributed associative memories: a comparison). In
Proceedings of COGNITIVA 87, Paris, La Villette, May 1987. Cesta-Afcet.

[10] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., … He, K.
(2017). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. Retrieved from
http://arxiv.org/abs/1706.02677

[11] You, Y., Gitman, I., & Ginsburg, B. (2017). Large Batch Training of Convolutional
Networks. Retrieved from http://arxiv.org/abs/1708.03888

[12] Yamazaki, M., Kasagi, A., Tabuchi, A., Honda, T., Miwa, M., Fukumoto, N., …
Nakashima, K. (2019). Yet Another Accelerated SGD: ResNet-50 Training on ImageNet
in 74.7 seconds. Retrieved from http://arxiv.org/abs/1903.12650

[13] Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., … Chintala, S. (2020).
PyTorch Distributed: Experiences on Accelerating Data Parallel Training. Retrieved from
http://arxiv.org/abs/2006.15704

[14] Sergeev, A., & Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in
TensorFlow. Retrieved from http://arxiv.org/abs/1802.05799

[15] Götz, M., Debus, C., Coquelin, D., Krajsek, K., Comito, C., Knechtges, P., … Streit, A.
(2020). HeAT – a Distributed and GPU-accelerated Tensor Framework for Data
Analytics. 2020 IEEE International Conference on Big Data (Big Data), 276–287.
https://doi.org/10.1109/BigData50022.2020.9378050

https://doi.org/10.1016/j.jocs.2015.12.007
https://doi.org/10.1016/j.future.2020.01.045
https://doi.org/10.1016/j.jcp.2019.04.004
https://doi.org/10.1016/j.combustflame.2005.11.002
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/MSP.2012.2211477
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1903.12650
http://arxiv.org/abs/2006.15704
http://arxiv.org/abs/1802.05799
https://doi.org/10.1109/BigData50022.2020.9378050

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 43 23.12.2021

[16] Rasley, J., Rajbhandari, S., Ruwase, O., & He, Y. (2020). DeepSpeed. Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 3505–3506. https://doi.org/10.1145/3394486.3406703

[17] Pumma, S., Buono, D., Checconi, F., Que, X., & Feng, W. (2020). Alleviating Load
Imbalance in Data Processing for Large-Scale Deep Learning. 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID), 262–
271. https://doi.org/10.1109/CCGrid49817.2020.00-67

[18] Jin, X., Cheng, P., Chen, W.-L., & Li, H. (2018). Prediction model of velocity field around
circular cylinder over various Reynolds numbers by fusion convolutional neural networks
based on pressure on the cylinder. Physics of Fluids, 30(4), 047105.
https://doi.org/10.1063/1.5024595

[19] Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. Retrieved
from http://arxiv.org/abs/1412.6980

https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1109/CCGrid49817.2020.00-67
https://doi.org/10.1063/1.5024595
http://arxiv.org/abs/1412.6980

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 44 23.12.2021

List of Acronyms and Abbreviations

AI Artificial Intelligence

ATBL Actuated Turbulent Boundary Layer

AUSM Advection Upstream Splitting Method

BS Batch Size

BSC Barcelona Supercomputing Centre, Spain

BSCW Basic Support for Cooperative Work

CAE Convolutional Auto-Encoder

CEA Comissariat à l'énargie atomique et aux énergies alternatives

CERFACS Centre Européen de Recherche et de Formation Avancée en Calcul

Scientifique, France

CFD Computational Fluids Dynamics

CINECA Consorzio Interuniversitario del Nord est Italiano Per il Calcolo Automático

CI/CS Continuous Integration / Continuous Delivery

CNN Convolutional Neural Network

CoE RAISE Center of Excellence "Research on AI- and Simulation-Based Engineering at

Exascale”

CPU Central Processing Unit

CSCS Centro Svizzero di Calcolo Scientifico

DDP see PyTorch-DDP

DL Deep Learning

DLB Dynamic Load Balance library

DLR German Aerospace Center

EoCoE-II Energy Oriented Centre of Excellence

FFTW Fastest Fourier Transform in the West

FV Finite Volume

FZJ Forschungszentrum Jülich GmbH, Jülich, Germany

GCC GNU Compiler Collection

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HDF5 HDF5 high performance data software library and file format to manage,

process, and store your heterogeneous data

HeAT Helmholtz Analytics Toolkit

HLRS High-Performance Center Stuttgart

HPC High-Performance Computing

IB InfiniBand

IB-EDR InfiniBand-Enhanced Data Rate

I/O Inpout/Output

JSC Jülich Supercomputing Centre

JUDAC Jülich Data Access system

JUDOOR Portal for managing accounts, projects and resources at JSC

JURECA Jülich Research on Exascale Cluster Architectures

JUWELS Jülich Wizard for European Leadership Science

KIT Karlsruhe Institute of Technology

LES Large-Eddy Simulations

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

D2.2 Report on porting and performance analysis

CoE RAISE - 951733 45 23.12.2021

MPI Message Passing Interface, API specification typically used in parallel

programs that allows processes to communicate with one another by sending

and receiving messages

MUSCL Monotone Upstream Centered Scheme for Conservation Laws

NCCL NVIDIA Collective Communication Library

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NVHPC NVIDIA HPC SDK. A Comprehensive Suite of Compilers, Libraries and Tools

for HPC

OpenACC Programming standard for parallel computing

PRACE Partnership for Advanced Computing in Europe (EU project, European HPC

infrastructure)

PBS Portable Batch System

PSTL Parallel Standard Template Library

PyTorch-DDP PyTorch Distributed Data Parallel

RAISE see CoE RAISE

RCCL ROCm Communication Collectives Library

RTU Rigas Tehniska Universitate, Latvia

RWTH Rheinisch-Westfälische Technische Hochschule Aachen, Germany

SIMD Single Instruction-Multiple Data

SMT Simultaneous Multithreading

TCP Transmission Control Protocol

TGV Taylor-Green Vortex

TALP Tracking Application Low-level Performance library

UDP User Datagram Protocol

UEBAS The Unified European Applications Benchmark Suite

UFTP User Datagram Protocol - File Transfer Protocol

UOI Háskóli Íslands – University of Iceland, Iceland

WP Work Package

ZeRO Zero Redundancy Optimizer

