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Executive Summary 

The previous Deliverable D2.1 presented best practice guidelines and tutorials for the various 

heterogeneous High-Performance Computing systems available to the European Center of 

Excellence in Exascale Computing “Research on AI- and Simulation-Based Engineering at 

Exascale” (CoE RAISE). The present Deliverable D2.2 is the first of a series of three 

Deliverables, namely D2.2, D2.3 and D2.4, all reporting on porting codes to heterogeneous 

systems, performing code optimizations, and analyzing code performance. Key results of this 

work are enhancements of the performance of specific numerical components embedded in 

simulation frameworks and their demonstration. These performance enhancements are key to 

the success of all the use cases proposed in Work Package 3 “Compute-Driven Use-Cases at 

Exascale” and Work Package 4 “Data-Driven Use-Cases at Exascale” of CoE RAISE. In this 

Deliverable, these successes are demonstrated for the multi-physics simulation codes Alya 

from the Barcelona Supercomputing Center and m-AIA from RWTH Aachen University. This 

is complemented by an extensive scaling and accuracy study of the most important AI 

frameworks. 
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1 Introduction 

The architectures of next-generation supercomputers with Exascale power will evolve around 

the current modular and heterogeneous setups. These systems will consist of multiple 

interconnected components with each component suited for a specific set of tasks and with an 

immense computational power. Such a modular approach is especially suited for compute- 

and data-centric workflows that may require different High-Performance Computing (HPC) 

architectures for the various potentially concurrently running workflow components. 

The different use-cases of the European Center of Excellence in Exascale Computing 

“Research on AI- and Simulation-Based Engineering at Exascale” (CoE RAISE) in Work 

Package 3 (WP3) “Compute-Driven Use-Cases at Exascale” and in WP4 “Data-Driven Use- 

Cases at Exascale” require workflows belonging to this class. They intertwine HPC methods 

for simulation and data processing with Artificial Intelligence (AI) technologies at Exascale to 

reduce the time-to-solution while retaining a high accuracy. The size of such simulations and 

data-driven workflows in terms of computational resources and amount of data is expected to 

reach unprecedented levels. Thus, porting existing codes to new architectures and new 

systems as well as optimizing code is required at all levels of the workflow. This involves data 

management (file transfer, data repositories), the modification of computational kernels of 

simulation and data processing codes, Input/Output (I/O) tuning, and the optimization of 

workflow management itself. 

The Task T2.1 “Modular and heterogeneous supercomputing architectures”, which 

corresponds to this Deliverable, involves heterogeneous architectures and targets porting and 

optimization of the codes that contribute to the complex workflows of the use-cases in CoE 

RAISE. The systems considered here include the heterogeneous HPC systems found at the 

Tier-2 and Tier-3 centers of the consortium (University of Iceland - UOI, RWTH Aachen 

University - RWTH, and Riga Technical University - RTU), the cutting-edge HPC systems of 

the Tier-0 and Tier-1 providers (Forschungszentrum Jülich – FZJ, and Barcelona 

Supercomputing Center - BSC), as well as the resources granted by the CoE’s access call of 

PRACE. These resources are targeted for development, optimization, debugging, and 

performance analysis purposes. 

Obviously, before exploring the performance of the codes, a porting phase is necessary, which 

ensures that the different codes can run on the target systems. The compilation on a new 

architecture requires adjustments to the compilation options and may involve changes to the 

code, e.g., to account for the specific compiler version. Only then, performance analyses and 

code optimizations can be performed to test the codes and to achieve the highest possible 

performance on the available systems. All optimizations will involve both Central Processing 

Units (CPUs) and accelerators. However, at this stage of the project, it is not clear which 

simulation codes of WP3 will eventually run concurrently with the AI tools on General Purpose 

Graphics Processing Units (GPGPUs). This will become clear in the second year of the project 

when full integrations of AI tools and HPC codes are achieved. All the activities of Task 2.1 

correspond to the preparation of the codes to make efficiently use of the upcoming Exascale 

systems. 

This Deliverable is organized as follows. Section 2 describes the computational resources 

available to the partners. This includes not only core-hours on European systems, but also the 

data repository provided and managed by FZJ. Then the porting, optimization, and 

performance analysis work is structured in two different parts. On the one-hand, Sec. 3 and 

Sec. 4 provide details in this respect on two of the simulation codes involved in WP3, i.e., Alya 
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from BSC and m-AIA from RWTH. Section 5 presents the work carried out on important AI 

tools considered in CoE RAISE. Finally, Sec. 6 summarizes the work performed and draws 

some conclusions. 
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2 Access to supercomputing resources 

To perform code analysis, engineering and tuning, to run large-scale simulations and data 

analysis, and to share data with the partners and the community, it is necessary to provide the 

developers in CoE RAISE with access to supercomputing resources. Such resources can be 

classified into four main categories: 

● compute time on prototype systems to give developers the opportunity to port to and 

test software on new hardware 

● compute time on large-scale production systems to port to and scale software on real 

production systems 

● compute time for application cases to perform domain-specific research and data 

analysis 

● data repositories that can be used to share data and AI models also with respect to 

performance engineering. 

These resources need to be further sub-classified into resources that can be provided by CoE 

RAISE for all partners to be shared and those that need to be acquired by the individual 

partners. All smaller development resources and shared data spaces fall into the first sub- 

category. Partners need to take care of their own computing time when it comes to their specific 

science and large-scale computing requests, i.e., such resources fall into the second sub- 

category. 

In the following, an overview of the computational resources available within CoE RAISE is 

given. This includes compute time on prototype systems, see Sec. 2.1, on production systems 

for performance engineering and application cases, see Sec. 2.2 and Sec. 2.3, as well as data 

repositories, see Sec 2.4. 

 
2.1 Compute time on prototype systems 

The CoE RAISE partners have access to various prototype systems that are available at the 

HPC centers involved in the project. An overview of the available systems, their specifications, 

accessibility, and usage for production and development can be found in Deliverable D2.5. 

 
2.2 Compute time on production systems for performance engineering 

The Partnership for Advanced Computing in Europe (PRACE)1 offers limited resources to all 

CoEs via their Rapid Access Program. In 2021, CoE RAISE has applied twice for PRACE 

resources through this program. In the first and the second round, compute time on main 

European systems has been granted as listed in Table 1. An overview of the resources and 

the systems is available for the CoE RAISE partners on the project’s Basic Support for 

Cooperative Work (BSCW) server2. The first round 2021-1 period was from 01/04/2021 to 

31/09/2021, the second round 2021-2 started on 01/10/2021 and runs until 31/03/2022. 
 

round location system core-h 

2021-1 CINECA Marconi100 275k3 

 
FZJ JUWELS-BOOSTER 38k 

 

1 PRACE https://prace-ri.eu 
2 BSCW compute time https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3599273 
3 781 node hours = 270k cumulative hours (unit used by PRACE)/25k local hours 

https://prace-ri.eu/
https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3599273
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FZJ JUWELS-CLUSTER 40k 

 
HRLS Hawk 280k 

 
CSCS Piz Daint 510k 

 
BSC Marenostrum4 100k 

 
CEA Joliot-Curie Rome 150k 

 
CEA Joliot-Curie SKL 87k 

 
CEA Joliot-Curie KNL 94k 

 
LRZ SuperMUC-NG 65k 

2021-2 CINECA Marconi100 300k 

 
FZJ JUWELS-BOOSTER 16k 

 
FZJ JUWELS-CLUSTER 45k 

 
HLRS Hawk 144k 

 
CSCS Piz Daint 10k 

 
BSC Marenostrum4 92k 

Table 1: Supercomputing resources granted to CoE RAISE from PRACE. 

 

2.3 Compute time for application cases 

Since production runs for the use cases may require a large amount of computing resources, 

they cannot be offered directly by the CoE RAISE such that the partners have to apply for them 

individually on the systems of their choice. An overview of how to apply for scientific computing 

resources is given in Deliverable D2.1. 

As an example, FZJ and RWTH jointly applied for the compute time project “Reconstruction of 

actuated turbulent boundary layers using neural networks” related to Task 3.1 “AI for turbulent 

boundary layers”. The proposal requested 8.6 Mio. core-h on the GPU partition of the Jülich 

Research on Exascale Cluster Architectures (JURECA) system. The resources for the 

compute time project, running from Nov. 2021 to the end of Oct. 2022, were fully granted after 

a successful technical and scientific review. 

 
2.4 Data repositories 

There have been requests from various CoE RAISE partners to share simulation and 

measurement data. These requests mainly came from partners jointly working on a specific 

use case. A shared data space also allows to reuse data in use cases that they have originally 

not been intended for, which is especially favorable when the corresponding compute time 

projects are running at the same HPC facility. Furthermore, in the context of porting and 

performance analysis, such a joint project space can be used to share performance analysis 

data, e.g., log- and trace-files, as well as simulation setups for scaling analyses. 
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To provide users with space to perform such activities, the CoE RAISE management from FZJ 

applied for a 200TB data project at the Jülich Supercomputing Centre (JSC)4 that was granted 

in July / 2021. CoE RAISE partners are invited to use this data space to share their data. They 

can apply for an account through the JUDOOR system5, which has intensively been described 

in Deliverables D2.1 “Best practice guidelines/tutorials for MSA / heterogenous systems” and 

D2.5 “Best practice guidelines / tutorials prototype”. Once the user has registered, he or she 

can join the data project raise. 

In the project folder, a subfolder performance_engineering has been created, where the 

contributors to Task 2.1, Task 2.2, and also the main code developers of the simulation and AI 

tools can place, e.g., their testing setups or mini apps for performance analysis or porting, and 

results from such analyses. 

The data space features the capability to also share data with the community. For this purpose, 

a folder open_data has been created, which, for the time of writing this document, holds data 

from the two WP3 use cases “AI for turbulent boundary layers” (RWTH, approx. 15TB) and “AI 

for data-driven models in reacting flows” (CERFACS, approx. 400MB). The data is available 

for download through CoE RAISE’s website6. More information on the integration into CoE 

RAISE’s website and the dataset details provided by the owners is given in Deliverable D6.9 

“Visual Identity”. 

The data is made available through UFTP (UDP - User Datagram Protocol - File Transfer 

Protocol). To make use of this sharing capability, the user needs to prepare the 

supercomputing environment. A detailed description on this and more information on UFTP 

can be found on JSC’s website7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4 JSC data projects https://www.fz- 

juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUsageModel/DataProjects.html 
5 JUDOOR https://judoor.fz-juelich.de 
6 CoE RAISE open data website https://www.coe-raise.eu/open-data 
7 UFTP https://apps.fz-juelich.de/jsc/hps/judac/uftp.html 

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUsageModel/DataProjects.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/NewUsageModel/DataProjects.html
https://judoor.fz-juelich.de/
https://www.coe-raise.eu/open-data
https://apps.fz-juelich.de/jsc/hps/judac/uftp.html
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3 Porting and performance analysis of Alya from BSC 

Some porting activities have already been carried out in the context of CoE RAISE on some 

machines (DEEP-EST, JUAWEI, CT-ARM, and CT-AMD) and results have been provided in 

project month M6 in Deliverable D2.6 “Support report” as part of Task 2.2 “Hardware 

prototypes”. 

Subsequently, an overview of Alya is first provided in Sec. 3.1 before in Sec. 3.2 different 

porting activities are described. This is followed by a description of optimization activities in 

Sec. 3.3 and results of performance analyses in Sec. 3.4. 

 
3.1 Overview 

Alya [1] is a simulation code based on Fortran 2008 and is developed by BSC. Alya solves 

coupled multi-physics problems using HPC techniques for distributed and shared memory 

supercomputers, together with vectorization and optimization at the node level. 

Strong scalability has been established for years, and recent efforts have mainly been devoted 

to node-level performance and parallel efficiency. In this sense: (i) A co-execution model has 

been developed to fully exploit heterogeneous resources and therefore enhance resource 

usage. (ii) An intra-node dynamic load balance strategy was implemented to correct load 

imbalances using the Dynamic Load Balancing (DLB) library developed at BSC8. (iii) At the 

inter-node level, a runtime redistribution mechanism based on real timings was implemented 

as well as a partition independent I/O strategy. (iv) To further enhance efficiency when solving 

multi-physics problems, an oversubscription strategy has been developed to avoid idle cores. 

(v) A continuous monitoring of the code enables to obtain the exact parallel efficiency, as a 

combination of communication efficiency and load balance, with the Tracking Application Low- 

level Performance library (TALP) developed at BSC. 

To monitor the progress, BSC has developed a performance suite, run whenever a new version 

of the code is available (several times a week). In addition, this suite allows the development 

team to detect failures in the performance. It is fully integrated into the Continuous Integration 

/ Continuous Delivery (CI/CD) approach the team follows. Therefore, any advances in the code 

can be compared to previous versions and quantified. As far as weak scalability is concerned, 

external weak-scalable solvers (multigrid, domain decomposition) were integrated into the 

code, mainly in the course of the Energy Oriented Center of Excellence-II (EoCoE-II) project9. 

Scalability has been demonstrated by the different Unified European Applications Benchmark 

Suite (UEABS) reports up to 32k cores (although strong scalability was established on Blue 

Waters in 2014 up to 100k cores for production multi-physics runs). The speed-up obtained is 

usually over 80% and of course, depends on the load per core. But in such tests, the speed- 

up is normalized using the lowest core count possible on the machine, which is sometimes 

quite high. 

To know the real parallel efficiency, BSC integrated the TALP library into Alya. One of the 

objectives is to include this library for the testing of the UEABS, to get the correct parallel 

efficiencies (which are in general different from the one stated by the classical normalization 

mentioned before). The code has been tested using a hybrid MPI/OpenMP approach in 

combination with the DLB library. A co-execution model enables the code to take advantage 

of both CPU and GPGPU heterogeneous architectures. 

 

8 DLB library: https://pm.bsc.es/dlb 
9 EOCOE-2 project: https://www.eocoe.eu 

https://pm.bsc.es/dlb
https://www.eocoe.eu/
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module load NVHPC/21.5-GCC-10.3.0 OpenMPI/4.1.1 

CoE RAISE aims at introducing AI technologies into the code while conserving the scalability 

enhancements made in Task 2.1 “Modular and heterogeneous supercomputing architectures” 

and Task 3.2 “AI for wind farm layout optimization” of CoE RAISE. In the course of the project, 

the focus is therefore on the implementation of efficient AI surrogates as well as their 

integration into the simulation workflow. Furthermore, the AI training phase will require specific 

tools to be implemented in the code which need to satisfy the Exascale requirements. It should 

be noted that at this stage it is not known if the Computational Fluids Dynamics (CFD) 

component of Alya will run in a co-execution mode together with AI tools during the high-fidelity 

training phase as well as during the simulation of the wind farm including the surrogates. 

Finally, it should be noted that all the optimizations and developments carried out in the context 

of RAISE can be identified in Alya GitLab in the branches with label project:raise10. 

 
3.2 Porting 

Porting Alya to GPGPUs already started in 2018. A first version was published in [2], where a 

co-execution model is presented, which enables to almost fully exploit a heterogeneous node. 

The main assembly kernel of the Navier-Stokes equations has then been optimized in the 

context of the EoCoE-II project. Despite the high gains obtained for this kernel, Amdahl’s law 

exhibited some new bottlenecks in subroutines not already ported, like the loop over elements 

to compute the critical time step. The corresponding subroutines have thus been modified to 

remove this constraining bottleneck and a performance analysis has been performed. To 

further accelerate the execution on GPGPUs, physical properties can now be computed on the 

fly during the assembly phase, instead of transferring them from the main memory. In the 

following, these optimization activities are described. It should, however, be noted that the 

performance analysis could not be finalized on time for this Deliverable. The complete results 

will hence be included in the subsequent version of this document, i.e., in Deliverable D2.3, 

which is due in project month M24. 

 
3.2.1 Porting to JUWELS-BOOSTER 

Thanks to the high portability of Alya, the program can run on the Jülich Wizard for European 

Leadership Science (JUWELS) system and on other supercomputers by only changing a few 

parameters and initial settings in the configure file and loading the proper environment 

modules. 

For the JUWELS-BOOSTER, the first step is to load these two environment modules: 
 

 

Then, once the source code is downloaded using git, we have to define in the 

Executables/unix folder a configure file config.in as shown next. Alya can compile as 

well using cmake, and all the options will soon be implemented for their use with cmake. 

 
 
 
 
 
 
 

10 Developments and optimizations implemented in Alya in the context of CoE RAISE on Alya gitlab: 
https://gitlab.com/bsc-alya/alya/-/merge_requests?scope=all&state=all&label_name[]=project%3Araise 

https://gitlab.com/bsc-alya/alya/-/merge_requests?scope=all&state=all&label_name%5b%5d=project%3Araise
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module load cmake/3.15.4 gnu8/8.3.0 mpi/openmpi-4.1.1 

 

 
 

3.2.2 Porting to Rudens at RTU HPC 

The RTU HPC cluster Rudens is using CentOS11, EPEL12, and the OpenHPC13 software 

package repositories. The GPGPU nodes on Rudens feature the NVIDIA A100 GPGPUs which 

benefit from the most recent version of the CUDA toolkit14. 

The RTU HPC environment uses a queuing system to match users’ jobs with available 

computing resources. Users submit their programs to the job scheduler (Portable Batch 

System, PBS15), which maintains a queue of jobs and distributes them on the compute nodes 

according to the server status, scheduling policies, and jobs parameters (number of compute 

nodes / cores, estimated execution time, required memory, etc.). 

RTU is the AI partner of BSC in CoE RAISE, i.e., this porting is key for the developments and 

testing of the proposed AI strategies. To compile Alya in the RTU HPC environment, it is 

necessary to load these modules: 
 

 
 
 
 
 

11 CentOS https://www.centos.org 
12 EPEL https://docs.fedoraproject.org/en-US/epel/ 
13 OpenHPC https://openhpc.community 
14 CUDA toolkit https://developer.nvidia.com/cuda-toolkit 
15 PBS https://www.pbspro.org 

 
######################################################################## 

# PGI CONFIGURE # 

######################################################################## 

F77    = OMPI_FC=pgfortran mpif90 

F90 = OMPI_FC=pgfortran mpif90 

FCOCC = cc -c 

FCFLAGS = -c -fast -Minfo=all -acc -ta=tesla:cuda11.3 -Mpreprocess - 

I./Objects_x/ -Mbackslash -Mextend -Mnoopenmp -Munroll -Mnoidiom -module $O 

EXTRALIB = -lc 

Fa2p = pgfortran -c -x f95-cpp-input -DMPI_OFF -J../../Utils/user/alya2pos - 

I../../Utils/user/alya2pos 

Fa2plk = pgfortran 

 

 
######################################################################## 

# PERFORMANCE FLAGS # 

######################################################################## 

FOPT = OMPI_FC=pgfortran mpif90 

CSALYA := $(CSALYA) -DNDIMEPAR -DOPENACCHHH -DSUPER_FAST -DDETAILED_TIMES - 

DSPLITDO 

CSALYA := $(CSALYA) -DVECTOR_SIZE=32000 

https://www.centos.org/
https://docs.fedoraproject.org/en-US/epel/
https://openhpc.community/
https://developer.nvidia.com/cuda-toolkit
https://www.pbspro.org/
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mkdir build 

cd build 

 
cmake .. 

 
set(CUSTOM_Fortran_FLAGS_ARCHITECTURE "-march=znver1 -mtune=znver1") 

 
make 

 
make -j4 

 
make install 

After the source code is downloaded from the git repository, it is necessary to configure and 

compile Alya by following the CMake16 configuration principles. 

In the Alya directory, a new build directory needs first to be created: 
 

 

To configure CMake using the command line, the following needs to be executed: 
 

 

By default, the compiled Alya executables will be optimized for the processor architecture used 

by the login node. To adapt to a specific architecture, it is possible to modify the corresponding 

CMake configuration flags in config/gnu.cmake file. For example, to tune executables for 

AMD EPYC architecture, the following flags can be used: 
 

 

To start the compilation process, the following command is issued: 
 

 

Multiple threads for the compilation can be employed via (4 threads in the given example): 
 

 

To install Alya in the build directory, type the following command: 
 

 

3.3 Optimization 

Any code optimization should begin by analyzing the execution times for the problem of study. 

Here, the focus is on the analysis of those parts of the code that take most of the time in the 

execution phase of Alya to study the viability of carrying out code changes. It is the aim to 

reduce the execution time by minimizing the effort of changing the code. 

As mentioned before, one of the goals is the use of AI tools for wind farm layout optimization. 

For this reason, a potential wind farm layout at the Bolund mountain is considered. The 

simulation is based on the solution of the Navier-Stokes equations using an LES turbulence 

model, where the computational mesh consists of 30 million elements. A snapshot of the 

solution is shown in Figure 1. 

 
 
 
 

16 CMake https://cmake.org 

https://cmake.org/
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Figure 1: Snapshot of the flow solution (Q-vorticity contours) obtained on the Bolund mountain case with 
Alya. 

 

As the computational pattern is repeated over time, only short executions on the JUWELS 

system, using 48 CPUs and 4 GPUs, are performed. The execution times for the 10 first solver 

iterations are shown in Figure 2. 

 

 
Figure 2: Alya CPU time before optimization of time step computation. 

 

As it can clearly be seen, there are two main parts of the code that take almost all the time for 

solving the governing equations: the beginning of a time step in red and the iteration operations 

in blue. 

In the context of this project, we use a fractional step method to solve the Navier-Stokes 

equations [3]. The finite element assembly consists of a loop over the elements of the mesh to 
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#ifdef OPENACC 

#define DEF_VECT ivect 

use openacc 

#else 

#define DEF_VECT 1:VECTOR_SIZE 

#endif 

 
#ifdef OPENACC 

!$acc data create(…) & 

!$acc copyin(…) 

!$acc parallel loop gang vector default(present) 

do ivect = 1,VECTOR_SIZE 

#endif 

 
do g = 1,ngaus 

do j = 1,nnode 

do i = 1,nnode 

Ae(DEF_VECT,i,j) = Ae(DEF_VECT,i,j)+Jac(DEF_VECT,g)*N(i,g)*N(j,g) 

end do 

end do 

end do 

 
#ifdef OPENACC 

end do 

!$acc end parallel loop 

!$acc end data 

#endif 

compute elemental right-hand sides, which are further assembled into a global right-hand side. 

With respect to the Iteration operations, most of the time is consumed in this right-hand side 

assembly operations (shown in blue). In the Begin time step part, the calculation of the critical 

time step (shown in red) takes almost all of execution time. This calculation is performed 

exclusively on CPUs. 

In the following Sec. 3.3.1 and Sec. 3.3.2 the optimization of the critical time step computation 

and the element assembly are presented. 

 
3.3.1 Optimization of the critical time step computation 

As described in [2], both vectorization and OpenACC17 portings are based on the same code, 

defining a VECTOR_SIZE at compilation time. The subsequently displayed algorithm illustrates 

the concept for the calculation of the element mass matrix Ae, where Jac is the Jacobian of 

the iso-parametric transformation including the weight of the Gauss-point g out of ngaus and 

N(i,g) is the shape function of node i out of nnode nodes at Gauss-point g. On the one 

hand, when using OpenACC (OPENACC is defined), the loop over elements is parallelized as 

DEF_VECT=ivect;. On the other hand, when vectorizing for CPUs, a bunch of VECTOR_SIZE 

elements is assembled at the same time, as defined by DEF_VECT=VECTOR_SIZE. 
 

 

Thus, the parameter VECTOR_SIZE corresponds to the number of elements assembled at the 

same time on CPUs, and to the number of elements used to parallelize the OpenACC element 

 

17 OpenACC https://www.openacc.org 

https://www.openacc.org/
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#ifdef OPENACC 

#define DEF_VECT ivect 

use openacc 

#else 

#define DEF_VECT 1:VECTOR_SIZE 

#endif 

 
#ifdef OPENACC 

!$acc data create(…) & 

!$acc copyin(…) 

!$acc parallel loop gang vector default(present) 

do ivect = 1,VECTOR_SIZE 

#endif 

 
do g = 1,ngaus 

Compute properties Prop(DEF_VECT,g) 

end do 

 

#ifdef OPENACC 

end do 

!$acc end parallel loop 

!$acc end data 

#endif 

loop on GPGPUs. This value is on the order of 32-64 on CPUs to trigger vectorization on 

superscalar cores, and it is on the order of 105-106 on GPGPUs to guarantee efficient 

parallelism. 

At present, the same vector size is used for CPU and GPGPU parallelization. Therefore, the 

acceleration of the element assembly (in blue) is carried out at the expense of the critical time 

step calculation (in red) which saturates the memory bandwidth by using a way too high 

VECTOR_SIZE. To overcome this issue, a second VECTOR_SIZE named 

VECTOR_SIZE_CPU, which is exclusive to CPU-based subroutines and used in the time step 

computation, has been defined in Alya. Note that in the future, this subroutine may be ported 

to OpenACC, as it was done for the element assembly, see next section. 

 
3.3.2 Optimization of the element assembly 

For the right-hand side assembly, physical properties are required at the Gauss-points of the 

elements. In the current version of Alya, these are computed at each time step in a separate 

loop, and then gathered from global arrays to element arrays during the assembly. To reduce 

the constraining data movement between CPU and GPGPU that is necessary for the assembly 

phase, on-the-fly calculations of such properties Prop have been implemented. The 

implementation follows the previously described parallelization/vectorization strategy. This 

strategy is shown in subsequently displayed algorithm. Corresponding results of a 

performance analysis will be reported in next Deliverable D2.3. 
 

 

3.4 Performance analysis 

The following Sec. 3.4.1 and Sec. 3.4.2 report on first performance analysis results for the 

optimized version of the time step computation in Alya and on the whole Alya workflow. 
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3.4.1 Alya: time step computation 

For the performance analysis of the time step computation, the same problem as described in 

the previous section is considered. In this simulation, VECTOR_SIZE = 512000 is set, which is 

used by both the CPUs and GPGPUs. By changing the vector size of the CPUs to 

VECTOR_SIZE_CPU = 64, the times of executions as shown in Figure 3 are obtained. 

 

 
Figure 3: Alya CPU time after optimization of the time step computation. 

 

Obviously, the optimization leads to a reduction of the time of the calculation of the time step 

by a factor of three with respect to the original version, which employed the same 

VECTOR_SIZE for both CPUs and GPGPUs. Considering that this operation is performed at 

each time step and that usually, for production runs, the simulations take thousands of time 

steps to finish, these code modifications will lead to a significant reduction of the total execution 

time of the use cases. 

 
3.4.2 Workflow 

The goal of using Alya on RTU’s HPC system is to train a Machine Learning (ML) model that 

is able to predict wind turbine sink parameters (x,y,z) in such a way that the difference 

between the simulation results of Alya and the reference data (label.data) is minimized, 

see Figure 4. 
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#!/bin/bash 

#PBS -N alya_workflow 

#PBS -q batch 

#PBS -A coe_raise 

#PBS -l nodes=1:ppn=64,feature=epyc 

#PBS -l walltime=00:30:00 

#PBS -j oe 

 
cd $PBS_O_WORKDIR 

./alya_workflow.sh 

#!/bin/bash 

 
module load gnu8/8.3.0 

module load mpi/openmpi-4.1.1 

STARTTIME=$(date +%s) 

python3 update_scaling.py 

python3 update_alya.py 

 

... 

 

 
 

 

Figure 4: Alya workflow for the training phase. 

 

At the current stage, the Alya workflow is tested without involving ML computations. To run the 

Alya workflow, the following batch script should be submitted to the HPC’s batch system 

(example for running case-075 test case on 8 EPYC cores using PBS): 
 

 

The content of the file alya_workflow.sh is as follows: 
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The average execution times of the Alya core workflow on RTU’s HPC system are shown in 

Table 2 for varying CPU core counts. It should be pointed out that the mesh of this test case 

is coarse, i.e., it only contains 41,805 hexahedra. This case has been selected for development 

and not for optimization purposes. 

 

CPU cores Execution time Speed-up ratio Parallel efficiency 

1 996 1 - 

4 437 2.3 57% 

8 223 4.5 56% 

Table 2: Preliminary performance testing results of the Alya workflow on RTU HPC EPYC nodes using case- 

075 test case data. 

 

A second series of tests has been carried out on the Bolund mesh. The performance results 

on 16, 32, and 64 CPU cores and shown in Table 3. Obviously, this case is much better suited 

for a large number of cores. As expected, the parallel efficiency is higher than in the previous 

case. 

 

CPU cores Execution time Speed-up ratio Parallel efficiency 

16 408 1 - 

32 207 1.97 99% 

64 125 3.26 82% 

Table 3: Performance testing results of Alya on RTU HPC EPYC nodes using Bolund test case data. 

... 

 
cd case/case-075 

mpirun ./alya case-075 

./alya2pos case-075 

cd ../.. 

python3 read_output.py 

 
ENDTIME=$(date +%s) 

echo "It takes $(($ENDTIME - $STARTTIME)) seconds to complete alya 

task..." 
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4 Porting and performance analysis of m-AIA from RWTH 

The m-AIA code developed at RWTH was ported to GPGPUs on heterogeneous systems such 

as the JURECA-DC and JUWELS-BOOSTER modules at JSC, FZJ. The shared memory 

OpenMP parallelization of the structured Finite Volume (FV) solver of m-AIA was replaced by 

an implementation using the Parallel Standard Template Library (PSTL)18. 

The PSTL is an implementation of the C++ standard library algorithms extending the execution 

policies by parallel and Single Instruction-Multiple Data (SIMD) optimizations. It offers efficient 

support for both a parallel and vectorized execution of algorithms. 

A brief overview of m-AIA, a description of the necessary porting environments, and details on 

the PSTL implementations are subsequently given in Sec. 4.1, Sec. 4.2 and Sec. 4.3. Section 

4.4 presents the results of a performance analysis, juxtaposing the performance of a pure CPU 

implementation to the accelerated GPGPU port. 

 
4.1 Overview of m-AIA 

The simulation code m-AIA is a multi-physics framework based on C++. It is developed at 

RWTH and FZJ provides support by means of further numerical method implementations and 

performance engineering. Detailed information on m-AIA can be found in Deliverable D2.6 

“Support report” of CoE RAISE. The m-AIA code contains several different modules to solve, 

e.g., compressible and incompressible flows, particle-laden flow, aeroacoustics, and moving 

boundary problems. The framework operates both on hierarchical Cartesian meshes that are 

generated with a massively parallel grid generator as part of m-AIA as well as with structured 

curvilinear meshes. 

The computation of turbulent boundary layer flows controlled by active wall movements is 

performed using the structured FV framework of m-AIA. For this application, the grid generation 

is simple, and the structured memory layout allows for a straightforward optimization of the 

numerical algorithm. The objective of the performance engineering of m-AIA within Task 2.1 is 

to enable m-AIA for GPGPU execution. Therefore, all routines called from the main loop, i.e., 

functions that are called in every iteration step, are ported to a GPU-parallelization-ready 

structure. Above all, this involves replacing the original loops over all cells with new PSTL 

loops. The details of this porting activity are found below. 

 
4.2 Setting up the environment for porting m-AIA to GPGPUs 

The GNU Compiler Collection (GCC)19 from the NVIDIA HPC (NVHPC)20 Software 

Development Kit SDK is used to compile m-AIA with GPGPU acceleration. The inter-process 

communication is taken care of using the ParaStation MPI21 implementation. The discrete 

Fourier transformations required by m-AIA are handled with an external software library, the 

Fastest Fourier Transform in the West (FFTW)22. On the JURECA-DC and JUWELS- 

BOOSTER heterogeneous systems, NVHPC with ParaStation MPI can be loaded as modules 

with the command below: 
 
 

18 Parallel STL 

https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-parallel-stl.html/ 
19 GCC https://gcc.gnu.org/ 
20 NVHPC https://developer.nvidia.com/hpc-sdk/ 
21 Parastation MPI https://docs.par-tec.com/html/psmpi-userguide/index.html 
22 FFTW http://www.fftw.org/ 

https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-parallel-stl.html/
https://gcc.gnu.org/
https://developer.nvidia.com/hpc-sdk/
https://docs.par-tec.com/html/psmpi-userguide/index.html
http://www.fftw.org/
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ml FFTW HDF5 parallel-netcdf CMake 

 
python3 configure.py nvhpc production --enable-pstl=ampere \ 

--with-hdf5iolib 

 
 

 
 

Loading these modules enables the system to use NVIDIA’s optimized GNU compiler nvc++, 

tuned especially for heterogeneous HPC systems. Note that a newer NVHPC/21.9-GCC- 

10.3.0 exist in the software stack of the system but requires CUDA23 with a version 11.4 that 

is not yet available in the software stack. Parallel I/O is performed using the Hierarchical Data 

Format version 5 (HDF524) or the parallel Network Common Data Form (parallel-NetCDF25) 

libraries. Furthermore, an in-situ interface has been integrated to connect to in-situ data 

processing tools. The compilation process of m-AIA is automated using the CMake software. 

The aforementioned software can be loaded on JURECA-DC and/or JUWELS-BOOSTER via: 
 

 

The configuration of m-AIA with NVHPC and HDF5 support can be performed by issuing the 

Python-3.x-based configuration script, via: 
 

This command uses the settings as specified in the cmake file corresponding to the present 

system, e.g., the jureca.cmake file, which can be found in 

$PATH_TO_MAIA/auxiliary/hosts directory of the m-AIA source code directory. This 

modified configuration script is made available for further use as part of a GIT-branch created 

for CoE RAISE, which is forked from the main m-AIA development repository, accessed 

through an invitation by the RWTH group from the given link26. Further information on how to 

create and/or modify this settings file can be found in D2.6. Upon successful configuration, the 

make -j command is issued to compile the m-AIA code. 

 
4.3 Optimization of m-AIA via GPGPU porting 

In the structured FV module of m-AIA, only a few functions in the main loop occupy most of 

the computational time. These functions include the computation of the convective and viscous 

flux terms on the governing equations, the time integration of the governing equations using 

the Runge-Kutta method, and the exchange of information between computational discretized 

domains (namely subdomains) via MPI. In the following, the exemplary modification of PSTL 

to the function that computes the convective fluxes is shown, noting that the procedure is 

equivalent for all aforementioned functions. 

Originally, the convective flux is computed within four nested for-loops, the most outer one 

looping over the spatial dimensions (in this case three). All following loops iterate over the 

number of computational grid points (namely cells) in the respective direction I,J,K. This 

allows these loops to cover the active inner cells and to omit all non-active ghost cells on the 

 
 

23 CUDA https://developer.nvidia.com/cuda-toolkit/ 
24 HDF5 https://www.hdfgroup.org/solutions/hdf5/ 
25 parallel-NetCDF https://parallel-netcdf.github.io/ 
26 GIT for mAIA with pSTL https://git.rwth-aachen.de/aia/MAIA/Solver/-/tree/structured_pstl 

 
ml NVHPC/21.1-GCC-9.3.0 ParaStationMPI 

https://developer.nvidia.com/cuda-toolkit/
https://www.hdfgroup.org/solutions/hdf5/
https://parallel-netcdf.github.io/
https://git.rwth-aachen.de/aia/MAIA/Solver/-/tree/structured_pstl
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for(MInt dim = 0; dim < nDim; dim++) { 

for(MInt k = 1; k < noCellsK-1; k++) { 

for(MInt j = 1; j < noCellsJ-1; j++) { 

for(MInt i = 1; i < noCellsI-1; i++) { 

 

// extrapolation of variables to cell-surfaces (MUSCL) 

… 

 
// computation of convective flux with extrapolated 

// cell-surface values (AUSM) 

… 

} 

} 

} 

} 

for(MInt dim = 0; dim < nDim; dim++) { 

… 

for(MInt I=start1D; I < end1D; ++I) { 

// MUSCL 

// AUSM 

} 

} 

for(MInt dim = 0; dim < nDim; dim++) { 

... 

#ifdef MAIA_NVHPC_COMPILER 

auto begin_ = thrust::counting_iterator(MInt{start1D}); 

#else 

auto begin_ = std::ranges::views::iota(MInt{start1D}).begin(); 

#endif 

 
... 

boundaries. In an ideal case, the PSTL-parallelized loop should iterate over a large number of 

elements, e.g., all cells in all directions. The nested loops, however, inherently lead to an 

iteration over small chunks of elements. Below is an example of such a function, where first 

the cell-surfaces values are reconstructed using a Monotone Upstream Centered Scheme for 

Conservation Laws (MUSCL) type strategy. Then, the cell-surface flux is computed with the 

Advection Upstream Splitting Method (AUSM). 
 

 

Here, the number of cells in a direction is denoted as noCells with I,J,K. This nested loop 

structure has been replaced by two loops as it is shown in the code below, i.e., loop unrolling 

has been performed. 
 

 

For each direction, an individual start and endpoint are determined, and the inner loop then 

iterates over nearly all cells, omitting only a few unnecessary cells at the very beginning and 

at the end. Although this is less efficient than the four nested loops shown above as 

start1D>(noCellsI*noCellsJ*noCellsK), since the flux is also computed 

unnecessarily for several non-active ghost-cells, this loop structure is easily parallelizable with 

PSTL, as seen below: 
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The inner for-loop has been replaced by the for_each_n-loop together with the par_unseq 

parameter such that the inner loop content is converted to a lambda function, which can be 

executed in parallel and in a non-sequential order on the GPGPU. When using GPGPUs, it is 

recommended to employ fewer CPU ranks to allow the PSTL-loop to iterate over several million 

elements. 

All other for-loops in functions called from the main-loop of the m-AIA structured FV solver 

are converted similarly. Due to the acceleration of compute-intensive functions via GPGPU 

execution, functions previously consuming only a fraction of the overall main-loop time now 

exert a larger weight. That is, every non-PSTL-treated for-loop over all elements being 

executed solely on the CPU (such as resetting the right-hand side to zero) turns into the new 

execution bottleneck. Therefore, all functions looping over a significant number of elements 

need to be PSTL-parallelized to achieve a global speedup. 

 
4.4 Performance analysis of the m-AIA GPGPU port 

For the sake of the length of this document, only a few important results are presented in the 

following. First, the strong scaling results of m-AIA using only CPUs or the CPU / GPGPU 

acceleration on the JUWELS-BOOSTER module are discussed. A Taylor-Green Vortex (TGV) 

case with 16.7 million computational elements in three directions is chosen for the benchmarks. 

This simulation employs the finite-volume solver of m-AIA and uses a structured computational 

mesh. The contour plot of such a TGV simulation’s axial velocity data is presented in Figure 5. 

 
 
 

 

Figure 5: Contour plots of the axial velocity on the middle plane of the TGV with 16.7 million computational 

elements. 

... 

 
std::for_each_n(std::execution::par_unseq, begin_, 

end1D, [=](MInt I) { 

// MUSCL 

// AUSM 

}); 

} 
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Figure 6 shows the strong scaling results of the TGV simulation using m-AIA compiled with 

NVHPC on the JUWELS-BOOSTER module. The computational time per iterative step is 

plotted over the number of ranks, i.e., the time for a complete Runge-Kutta loop to integrate 

the time derivative of the employed transport equation is measured. More information 

regarding this topic can be found in classical textbooks, e.g., in [4]. The relative performance 

is computed based on the slowest simulation. Presented are the performances of the pure 

CPU computation (denoted as m-AIA CPU) and the GPGPU accelerated computation 

(denoted as m-AIA GPU). In an ideal case, the computational domain is decomposed into 

subdomains, where each subdomain is attained to a CPU thread. In the current 

implementation, each subdomain employs a single GPGPU. Thus, this implementation does 

not utilize the complete number of available CPU threads. For example, a JUWELS-BOOSTER 

node consists of two CPUs with a total of 48 CPU hardware threads and 96 Simultaneous 

Multithreading (SMT) threads. To use all resources efficiently, the computational domain 

should be subdivided into 96 subdomains. As each node features four GPGPUs, the current 

implementation makes only use of four threads yielding unoccupied 92 SMT threads. This 

 

 
Figure 6: Performance of m-AIA to simulate a TGV case with 16.7 million elements on the JUWELS- 

BOOSTER module using only CPUs (m-AIA CPU and m-AIA ideal) and both CPUs with GPGPU acceleration 

(m-AIA GPU). The m-AIA CPU in the top row employs the same number of threads as the m-AIA GPU variant. 

The ranks denote the number of subdomains, i.e., each rank uses a single SMT thread with a single GPGPU. 

The bottom row utilizes all the SMT threads (in this case 96). Note the bottom row has the number of nodes 

on the x-axis. 
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limitation is a result of the current implementation, where each subdomain can only utilize a 

single SMT thread and a single GPGPU. Note that developments for co-execution, i.e., using 

both resources CPUs and GPGPUs more efficiently in a concurrent manner, are ongoing. For 

a fair comparison, the results of the m-AIA CPU case use only four CPU threads, noting that 

allocating multiple SMT threads to a single subdomain is currently not possible when GPGPU 

acceleration is utilized. 

It is evident from Figure 6 that employing the GPGPU acceleration greatly reduces the 

computational time. The relative performance plot depicted in Figure 6b reveals the m-AIA 

GPU version to be at least a factor of 10 faster than the conventional m-AIA CPU version when 

the number of CPU threads is set equally. An additional analysis is performed by comparing 

the GPGPU accelerated m-AIA GPU code with the standard m-AIA implementation that utilizes 

96 SMT threads per node, i.e., 96 subdomains per node. The latter is denoted as m-AIA ideal. 

Utilizing all of the CPU threads in a m-AIA CPU execution (m-AIA ideal) greatly reduces the 

overall computation time, see Figure 6c. The time-to-solution using the GPGPU acceleration 

is, however, still shorter. The relative performance of m-AIA with GPGPU acceleration to m- 

AIA with pure CPU computation utilizing all the CPU threads shows 50% better performance, 

see Figure 6d. The power consumption using these additional GPGPUs is yet to be 

investigated. Different co-execution strategies to utilize the unused CPU threads are currently 

being discussed. 
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5 Porting and performance analysis of AI technologies 

One of the goals of CoE RAISE is to couple the aforementioned CFD / multi-physics codes to 

AI frameworks to achieve intertwined and efficient simulation, surrogate and modeling, and 

data processing workflows. This section first gives an overview of the various datasets used in 

ML applications in Sec. 5.1. Section 5.2 discusses strategies of porting such AI frameworks to 

heterogeneous systems such as the JUWELS, JURECA, and the DEEP-EST systems at the 

Jülich Supercomputing Centre (JSC), HAWK at the High-Performance Computing Center 

Stuttgart (HLRS), PizDaint at the Swiss National Supercomputing Center (CSCS), and the CT- 

AMD system at BSC. The presentation of these strategies is complemented by the results of 

performance analyses of the AI frameworks in Sec. 5.3. 

 
5.1 Overview of datasets used in ML benchmarks 

For the sake of the length of this document, only three important datasets are introduced in 

this section. The first two datasets ImageNet and modified National Institute of Standards and 

Technology (MNIST) are two famous datasets freely available for ML research. The third 

dataset is an example from a compute-driven use-case introduced in Task 3.1 “AI for turbulent 

boundary layers”. A brief overview of these datasets is given below. 

 

ImageNet: ResNet 

The ImageNet dataset was first introduced as a benchmarking dataset at the ImageNet Large 

Scale Visual Recognition Challenge in 2012 [5]. It contains 1,281,167 images in the training 

set and 50,000 images in the validation set. In total, there are 1,000 classes that these images 

are assigned to. The main goal of the challenge is to train algorithms on the training set to 

accurately predict the classes of the images in the validation set. Uncompressed, the total 

dataset has a size of approximately 300 GB. Over the past few years, it has become the most 

used benchmarking dataset for computer vision applications. 

Convolutional Neural Networks (CNNs) have shown great performance on the task of 

predicting the ImageNet classes. From the original structure presented in the AlexNet [6], 

continuous improvements were made, yielding the ResNet architecture [7]. Residual Nets 

feature so-called short skip connections that omit some layers, making it possible to train 

deeper networks that would otherwise suffer from degradation [7]. The original ResNet50 

architecture has 50 layers of neurons and is despite recent advancements in the field of 

Transformers still one of the standard benchmarking architectures in computer vision. 

 

MNIST: CNN 

The modified National Institute of Standards and Technology (MNIST) dataset [8] consists of 

a collection of handwritten digital images used for character recognition. This dataset is an 

extension to the original dataset available from the National Institute of Standards and 

Technology (NIST)27. The dataset consists of 60,000 example digital images for training and 

10,000 examples for testing purposes. Each example image is centered and represented in 

fixed 28x28 black and white pixels. The grayscale levels are introduced to each image using 

anti-aliasing techniques. 

Many ML techniques have been tested to train this dataset, such as linear classifiers, k-nearest 

neighbors, boosted, stumps, non-linear classifiers, support vector machines, neural nets, and 

 

27 NIST https://www.nist.gov 

https://www.nist.gov/
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CNNs, where an overview can be found in [8]. As this dataset has proven to be useful in testing 

ML performance, this work uses this dataset for CNN benchmarks. 

 

ATBL: Auto-encoder 

The Actuated Turbulent Boundary Layer (ATBL) dataset is generated in the compute-driven 

use-case Task 3.1 “AI for turbulent boundary layers”. Briefly, the training dataset is generated 

using a high-resolution large-eddy simulation (LES) approach with a moving geometry to 

create oscillating boundary layers, which reduces the friction drag of the turbulent boundary 

layer. Further information on the geometrical setup, the simulation method, and the first results 

can be found in Deliverable 3.1. 

To train networks via ML, an 8.3 TB dataset is extracted from the LES of the ATBL. Moreover, 

a smaller dataset is generated based on this large dataset for development purposes. This 

smaller dataset consists of 21 GB of data for training and additional 1.2 GB of data for testing 

purposes (a total of 22.2 GB). 

The initial ML framework to be tested is a Convolutional Auto-Encoder (CAE). CAEs are 

unsupervised neural network models that summarize the general properties of the input 

dataset in fewer parameters while learning how to reconstruct the input again after 

compression, namely decompression [9]. Due to their simple implementation, CAEs are widely 

used for reducing the dimensionality of any dataset. More information on this topic can be 

found in Deliverable D2.14, where the details are omitted for brevity. 

Training a CAE with large datasets is computationally challenging and can only be performed 

efficiently when parallelization strategies are exploited. A common parallelization strategy is to 

distribute the input dataset to separate GPGPUs, where the trainable parameters between the 

GPGPUs are exchanged occasionally. This method is called distributed data parallelization 

and greatly reduces the training time. Depending on the data exchange rate between the CPUs 

and/or GPGPUs, this type of parallelized training can scale to many workers of CPUs or 

GPGPUs. Currently, the GPGPUs require the CPUs to access the input data. Since the data 

needs to be transferred from the CPUs to the GPGPUs, the performance of the CPUs becomes 

the limiting factor in CAE training. 

It should be noted that CAE training can be performed using only CPUs. It is, however, 

preferred to run this on GPGPUs as their architecture allows for much faster ML-typical matrix- 

matrix operations. This way, in slow training times can be avoided. 

The only drawback of the data parallelization strategy is the loss in training accuracy that is 

caused by the increased batch sizes. As the input dataset is distributed to separate workers, 

the total batch size linearly increases by the number of workers - even though the batch size 

per worker remains fixed. That is, in a data-parallel training with a large number of workers, 

the batch size inevitably becomes large, which leads to reduced training accuracies. This limits 

the linear scaling performance of the CAE training and renders the training accuracy an 

important factor when investigating the scaling performance of a CAE training. 

The loss of training accuracy and how to cope with it has intensively been addressed in the 

literature [10,11,12]. Tuning other hyperparameters such as the learning rate, batch size per 

worker, and the number of epochs can be adjusted to keep the training accuracy at a certain 

level when the number of workers is increased, as done in previous studies [10,11,12]. 
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5.2 Porting existing ML frameworks to heterogeneous systems 

This part focuses on porting existing ML frameworks to different heterogeneous systems. A 

change in the structure of these frameworks is not required, as these frameworks are already 

optimized for both CPU and/or GPGPU. The CAEs using distributed data parallelization 

methods are developed with the open-source framework PyTorch 1.10.028. There are several 

frameworks that integrate distributed data parallelization to PyTorch, where the most popular 

ones are ported and investigated in this project: 

● Distributed Data Parallel (DDP) module as part of a PyTorch package [13] 

● Horovod distributed training package, developed by Uber [14] 

● Helmholtz Analytics Toolkit HeAT, a project of the Helmholtz association [15] 

● DeepSpeed, developed by Microsoft [16] 

At a macroscopic scale, these distributed data parallel frameworks operate similarly. However, 

at a microscopic scale, each framework is optimized differently leading to different scaling 

performances and training accuracies for individual cases. 

In the following, a brief overview of the used frameworks is given in Sec. 5.2.1. Subsequently, 

the necessary porting of these methods is exemplarily explained for the systems JURECA in 

Sec. 5.2.2. Finally, general initialization methods are presented in Sec. 5.2.3 along with a 

specific configuration for Rudens at RTU. It should be noted that porting these frameworks to 

further systems is similar. 

 
5.2.1 A brief overview of used ML frameworks 

PyTorch Distributed Data Parallel (PyTorch-DDP) [13] 

PyTorch is an open-source ML framework, mainly developed by Facebook AI Research. The 

PyTorch-DDP module features a built-in way to run distributed training of neural networks on 

multiple workers. Similar to Horovod, the PyTorch-DDP library also uses an AllReduce 

operation for gradient reduction. Additionally, the gradients are not synchronized individually. 

Instead, several gradients are collected in ‘buckets’ and are only communicated when the 

buckets are sufficiently filled. This reduces the total number of communication operations. In 

contrast to Horovod, PyTorch-DDP uses a simple heuristic for determining the reduction order 

on a local worker level: The gradients are bucketed in the reverse order of their computation 

in the forward pass of the network. This is motivated by the fact that the last layers of a network 

are likely the first to finish computation during the backward pass. To further speed up the 

training process, PyTorch-DDP offers a no_sync option to only execute an AllReduce 

operation every few iterations. 

 

Horovod [14] 

Horovod is an open source distributed Deep Learning (DL) library originally developed by Uber 

for TensorFlow. It supports most other DL frameworks such as PyTorch, TensorFlow29, 

Keras30, and Apache MXNet31. Horovod can be included into existing training script with only 

a few lines of code changes rendering it a popular choice when it comes to distributed DL. It 

was one of the first libraries to make use of a decentralized Ring_AllReduce scheme for the 

 

28 PyTorch https://pytorch.org/ 
29 TensorFlow https://www.tensorflow.org 
30 Keras https://keras.io 
31 MXNet https://mxnet.apache.org 

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
https://mxnet.apache.org/
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synchronization of the gradients, whereas most of the other frameworks at the time were using 

a centralized parameter server. On a local worker level, Horovod handles communication 

operations asynchronously via a separate background thread. To ensure consistency across 

all workers on a global scale, a consistency protocol is enforced. In literature, it has been 

shown that the combination of background thread and consensus protocol leads to huge 

communication overhead, acting as a drain on performance [17]. 

 

HeAT [15] 

The Helmholtz Analytics Toolkit HeAT is an open-source distributed DL library developed by 

partners from Deutsches Zentrum für Luft- und Raumfahrt - German Aerospace Center (DLR), 

FZJ, and Karlsruhe Institute of Technology (KIT). HeAT is a flexible and seamless open-source 

software for high-performance data analytics and ML. It provides highly optimized algorithms 

and data structures for tensor computations using CPUs, GPGPUs, and distributed cluster 

systems using MPI for communication. The objective of HeAT is to fill the gap between data 

analytics and ML libraries with a strong focus on single-node performance on the one hand, 

and traditional HPC on the other [12]. 

 

DeepSpeed [16] 

DeepSpeed is an open-source distributed DL library originally developed by Microsoft. The 

library is designed to reduce computational effort and memory usage, and to train large 

distributed models with better parallelism on existing computer hardware. DeepSpeed is 

optimized for low latency, high throughput training. It includes the Zero Redundancy Optimizer 

(ZeRO)32 for training models with 100 billion or more parameters, especially useful for CNNs 

and Natural Language Processing (NLP). 

 
5.2.2 Porting ML frameworks 

Porting these frameworks to heterogeneous systems is similar. Therefore, necessary porting 

steps are in the following exemplarily shown on the DC module of the JURECA system at FZJ. 

This system consists of 192 accelerated compute nodes, each equipped with dual AMD EPYC 

7742 CPUs and four NVIDIA A100 GPU - a total of 24,576 cores and 768 GPGPUs. The nodes 

are connected to each other with dual InfiniBand HDR switches. 

The distributed data parallel frameworks require the MPI library and Python with a version 3.x. 

In case the ML training is to be accelerated with GPGPUs, either CUDA or ROCm33 libraries 

are required, depending on the GPGPU’s manufacturer. On the JURECA-DC system, GCC, 

Parastation MPI, CMake, and Python34 frameworks are available to the user as modules, and 

loaded as: 
 

 

This command implicitly loads GCC 10.3, ParaStationMPI 5.4.10-1, Python 3.8.5, CUDA 11.3 

frameworks, and explicitly loads UCX 1.10.135, CUDA 11.3 and the cuDNN 8.2.1.32 libraries36. 

 
 

32 ZeRO https://www.deepspeed.ai/tutorials/zero/ 
33 ROCm https://github.com/RadeonOpenCompute/ROCm 
34 Python https://www.python.org/ 
35 UCX https://openucx.org/ 
36 cuDNN https://developer.nvidia.com/cudnn 

https://www.deepspeed.ai/tutorials/zero/
https://github.com/RadeonOpenCompute/ROCm
https://www.python.org/
https://openucx.org/
https://developer.nvidia.com/cudnn
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python3 -m venv <env_name> 

source <env_name>/bin/activate 

 
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 \ 

torchaudio===0.10.0 \ 

-f https://download.pytorch.org/whl/torch_stable.html 

 
export HOROVOD_GPU=CUDA 

export HOROVOD_GPU_OPERATIONS=NCCL 

export HOROVOD_WITH_PYTORCH=1 

pip3 install horovod 

These modules alone satisfy the basic installation of the distributed data parallel frameworks. 

However, to enable all the framework options such as the NCCL communication backend37, 

the following module needs to be loaded: 
 

 

This provides the user with NCCL 2.10.3 with CUDA support. Each parallel framework can be 

compiled on JUWELS from the source code. However, the Python package installer pip38 or 

the open-source package management system Conda39 greatly reduce the complexity to 

compile such frameworks. Alternatively, a slightly older PyTorch 1.8.1 is available as a module 

on the system. In the following, pip is chosen for the sake of simplicity. Initially, it is wise to 

create a Python environment with a name <env_name> and source it: 
 

 

This keeps the management of the compiled frameworks simple. The first required library is 

PyTorch, which can be compiled with these commands (noting the installed CUDA version of 

11.3 on the system): 
 

 

The PyTorch framework already contains all the required libraries for the DDP module to run, 

i.e., no additional compilation of this module is necessary. 

The second distributed data parallelization framework Horovod can be compiled with these 

commands: 
 

 

The first three environmental variables setup CUDA for GPGPUs, NCCL for communication 

backend between workers, and PyTorch for the host language. It should be noted that the first 

two flags are only necessary for GPGPU accelerated training, and for AMD GPGPUs, ROCm 

replaces CUDA and RCCL40 replaces NCCL. 

The third distributed data parallelization framework HeAT can be compiled with these 

commands: 

 
 
 
 

37 NCCL https://developer.nvidia.com/nccl 
38 pip https://pypi.org/project/pip/ 
39 Conda https://docs.conda.io/ 
40 RCCL https://github.com/ROCmSoftwarePlatform/rccl 

https://download.pytorch.org/whl/torch_stable.html
https://developer.nvidia.com/nccl
https://pypi.org/project/pip/
https://docs.conda.io/
https://github.com/ROCmSoftwarePlatform/rccl
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export DS_BUILD_FUSED_ADAM=1 

export DS_BUILD_UTILS=1 

pip3 install DeepSpeed 

 
pip3 install Pillow pyparsing python-dateutil matplotlib h5py \ 

Pytorch-nlp 

 

 
 

The optional arguments hdf5 and netcdf denote the input and output capabilities of HeAT. 

These arguments are important since most of the input dataset is stored in HDF5 or parallel- 

NetCDF formats. The I/O libraries need to be preloaded by issuing: 
 

 

The final distributed data parallelization framework DeepSpeed can be compiled with these 

commands: 
 

 

The first two environmental variables are responsible to compile helper utilities of DeepSpeed 

required during CAE training. For pre- and post-processing the data, and for advanced CNN 

commands (such as three-dimensional convolutions), the additional Python libraries Pillow41, 

pyparsing42, python-dateutil43, matplotlib44, h5py45, and pytorch-nlp46 need to be included to the 

Python environment by 
 

 

5.2.3 Initialization of used frameworks 

The following paragraph, describes the general approach on the JURECA-DC system to 

initialize ML frameworks. Next paragraph provides examples on how to perform parallel 

training using PyTorch-DDP on the Rudens system at RTU. 

 

Initialization of ML frameworks on JURECA-DC at FZJ 

These four distributed data parallelization frameworks are initialized using various methods. 

For the DDP framework, an elastic launch framework that is a part of the PyTorch library is 

used (previously known as distributed launch). This elastic launch framework enables 

distributed training jobs to be executed on multiple workers on a single or multiple-node, where 

in case of a failed worker or node, a new worker replaces the faulty one. Unfortunately, this 

type of initialization is not favored by the slurm47 job scheduler (typically found in many HPC 

systems) as the user must reserve the workers and nodes in advance. For this purpose, the 

 
 

 

41 Pillow https://pillow.readthedocs.io/en/stable 
42 pyparsing https://github.com/pyparsing/pyparsing 
43 python-dateutil https://dateutil.readthedocs.io/en/stable/ 
44 matplotlib https://matplotlib.org 
45 h5py https://www.h5py.org 
46 pytorch-nip https://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html 
47 Slurm https://slurm.schedmd.com/ 

 
pip3 install heat[hdf5,netcdf] 

https://pillow.readthedocs.io/en/stable
https://github.com/pyparsing/pyparsing
https://dateutil.readthedocs.io/en/stable/
https://matplotlib.org/
https://www.h5py.org/
https://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html
https://slurm.schedmd.com/
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torchrun \ 

--nnodes=$SLURM_NNODES \ 

--nproc_per_node=$SLURM_GPUS_PER_NODE \ 

--rdzv_id=$SLURM_JOB_ID \ 

--rdzv_backend=c10d \ 

--rdzv_endpoint=$SLURMD_NODENAME.jureca:<free_TCP_port> \ 

<training_Script>.py (arguments) 

 
python3 -m deepspeed.launcher.launch \ 

--node_rank $SLURM_PROCID \ 

--master_addr $SLURMD_NODENAME \ 

--master_port <free_TCP_port> \ 

--world_info <list_of_workers_nodes_in_Base64> \ 

<training_Script>.py (arguments) \ 

--deepspeed_mpi \ 

--deepspeed_config <DS_config.json> 

 
sysN=$(eval "scontrol show hostnames") 

for i in $sysN; do 

x+=\"$i\":[$CUDA_VISIBLE_DEVICES], 

done 

list_of_workers_nodes_in_Base64=`echo {${x::-1}} | base64 -w 0` 

 
python3 -u <training_Script>.py 

initialization without elasticity can be used, as given below with the help of slurm’s environment 

variables: 
 

 

Several keyword arguments must be provided to the torchrun framework, such as the 

number of nodes, the number of GPGPUs per node, a unique job identification number, the 

used collective communication library c10d48, and the host (or master) node address with a 

free Transmission Control Protocol (TCP) port, in respective order. 

The DeepSpeed framework utilizes a similar initialization method as the PyTorch-DDP 

framework, i.e., the deepspeed.launcher framework, where an example is given below: 
 

 

Here, the deepspeed.launcher framework requires several keyword arguments such as 

the rank of the node, the host (or master) node address, a free TCP port of the host (master) 

node, and the list of the workers and nodes in Base64 format. The latter two arguments tell 

the DeepSpeed framework to run in parallel and provide it with a special configuration file 

<DS_config.json>. The --world_info argument with the list of the workers and nodes 

in Base64 format can be defined in the batch script used on the JURECA system by: 
 

 

The other two distributed data parallelization frameworks Horovod and HeAT do not require a 

special initialization, i.e., the ML training scripts can simply be executed by the command: 
 

 
 
 
 

48 c10d https://pytorch.org/docs/stable/distributed.html 

https://pytorch.org/docs/stable/distributed.html
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#!/bin/sh 

#PBS -N pytorch_multinode_job 

#PBS -q batch 

#PBS -A coe_raise 

#PBS -l nodes=2:ppn=2:gpus=2,feature=v100 

#PBS -j oe 

 
pbsdsh -u -v "$PBS_O_WORKDIR/pytorch_worker.sh" 

 
#!/bin/sh 

 
module load cuda/cuda-10.2 conda 

source activate raise_conda_env 

 

cd $PBS_O_WORKDIR 

python3 <ddp_gpu.py> > <log_file> 

Example CAE training scripts using various datasets such as MNIST, Image Net, and the ATBL 

datasets are documented and can be found in the master branch of a GIT repository49. This 

repository also contains machine-specific batch scripts for the heterogeneous systems 

JURECA, JUWELS, DEEP-EST, CT-AMD, and automated compilation scripts for the 

distributed data parallelization frameworks mentioned above. 

 

Using PyTorch-DDP on the Rudens system at RTU HPC 

To reduce the training time, the PyTorch models are mostly trained on multiple GPGPUs within 

a single node or across different nodes. An example to run PyTorch-DDP on two nodes, each 

having two Tesla V100 Volta GPGPU, using the batch script pytorch_multinode.sh and 

helper script pytorch_worker.sh is given below. The batch script 

pytorch_multinode.sh executes (spawns) the PyTorch-DDP code on all defined nodes 

under the control of PBS. The content of pytorch_multinode.sh is: 
 

 

Several keyword arguments for qsub are required, such as the following: 

● PBS -N - declares the name for the job. 

● PBS -q - defines the destination of the job. The destination names a queue, a 

server, or a queue at a server. 

● PBS -A - defines the project account to allocate the computational resources. 

● PBS -l - denotes the requested computational resources. 

● PBS -j - declares if the standard error stream of the job will be merged with the 

standard output stream of the job. An option argument value of oe directs that the two 

streams will be merged, intermixed, as standard output. 

The batch script pytorch_multinode.sh calls the helper script pytorch_worker.sh on 

each node for PyTorch-DDP to be executed on that node. The content of 

pytorch_worker.sh is: 
 

 
 
 

 
49 GIT trainig scripts https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc.git 

https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc.git
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module load cuda/cuda-10.2 conda 

conda activate 

conda install -y tempfile pytorch torchvision torchaudio / 

cudatoolkit=10.2 -c Pytorch 

 
#!/usr/bin/env python 

 
import os, sys, tempfile, torch 

import torch.distributed as dist 

import torch.nn as nn 

import torch.optim as optim 

import torch.multiprocessing as mp 

from torch.nn.parallel import DistributedDataParallel as DDP 

 
def setup(rank, world_size): 

os.environ['MASTER_ADDR'] = 'localhost' 

os.environ['MASTER_PORT'] = '12355' 

 

# initialize the process group 

dist.init_process_group("nccl", rank=rank, 

world_size=world_size) 

 
def cleanup(): 

dist.destroy_process_group() 

 

class NeuralNetModel(nn.Module): 

# Model implementation 

# ... 

 
def run_model(rank, world_size): 

print(f"Running DDP model on rank {rank}.") 

setup(rank, world_size) 

 

# create model and move it to GPU with id rank 

model = NeuralNetModel().to(rank) 

ddp_model = DDP(model, device_ids=[rank]) 

 
# implementation of model optimization 

# ... 

 

# clean the process group 

cleanup() 

 
... 

The script pytorch_worker.sh sources Conda environment that includes required Python 

libraries. Creating the Conda environment can be performed simply by initiating the commands 

below. 
 

 

The content of the exemplary training script ddp_gpu.py is: 
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qsub -V <pytorch_multinode.sh> 

 

 
 

Finally, the job is executed on multiple nodes by submit the batch script to PBS, via: 
 

 

The flag -V above for the qsub command declares that all environment variables in the qsub 

commands are exported to the batch job. 

 
5.3 Performance analysis of existing ML frameworks on heterogeneous 

systems 
 

Figure 7: Performance of the PyTorch-DDP framework for training on a small version of the ATBL dataset 

on the JUWELS-BOOSTER. Each node consists of four NVIDIA A100 GPGPUs. Depicted are the compute 

time over the number of nodes (a), the strong-scaling performance (b), the code efficiency with increasing 

node number (c), and the corresponding training error (d). The configurable hyperparameter learning rate 

is linearly scaled. The black dashed lines represent the ideal scenario. Note the exponential scales. 

... 

 
def run_multi_model(demo_fn, world_size): 

mp.spawn(demo_fn, args=(world_size,), nprocs=world_size, 

join=True) 

 
if name == " main ": 

n_gpus = torch.cuda.device_count() 

assert n_gpus >= 2, 

f"Requires at least 2 GPUs to run, but got {n_gpus}" 

world_size = n_gpus 

run_multi_model(run_model, world_size) 
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This part focuses on the scaling performances of various ML frameworks that are ported to 

different heterogeneous systems without modifying the original code. For the sake of the length 

of this document, only a few important results are presented in this section. Initially, the strong 

scaling results of the PyTorch-DDP framework on the JUWELS system are discussed. 

Figure 7 shows the performance of the PyTorch-DDP framework for training on the small 

version of the ATBL dataset (21 GB) on the JUWELS-BOOSTER system. To reduce the 

computational time, a total of 10 training epochs E=10 is performed. The batch size per 

GPGPU is set to B=100. The hyperparameter learning rate L is linearly scaled with the number 

of nodes. The learning rate is set to L=4e-5 and L=0.02 for a single and 512 nodes. The training 

error is adopted from the work by Jin et al. [18] and is computed as the difference of values 

between the input and reconstructed data. The CAE training employs the Adam optimization 

algorithm [19] with a weight decay parameter of W=0.003. 
 

Figure 8: Performance of the existing distributed data parallel frameworks for training on a small version 

of the ATBL dataset on the CTE-AMD system at BSC. Each node consists of two AMD MI50 GPGPUs. 

Depicted are the compute time over the number of GPGPUs (a), the strong-scaling performance (b), the 

corresponding training error (c), the code efficiency under increasing GPGPU-count (d), the relative speed- 

up (e), and the relative square root of the training error (f). The configurable hyperparameters for each 

framework are fixed. The black dashed lines represent the ideal scenario. Note the exponential scales. 

 

Figure 8 shows the performance of the existing distributed data parallel frameworks for training 

on a small version of the ATBL dataset (21 GB) on the CTE-AMD system, which employs the 

ROCm and RCCL libraries instead of the CUDA and NCCL libraries that are necessary on 

NVIDIA-based systems. For each framework, a total of 10 epochs E=10 are performed for the 

sake of computational time, the batch size per GPGPU is set to B=96, and the hyperparameter 

learning rate is L=0.01. Similarly, the CAE trainings here employ the Adam optimization 

algorithm [19] with a weight decay parameter of W=0.003. 

From Figure 8a, it is obvious that the HeAT framework is slightly faster than the rest of the 

frameworks, especially evident when more than two GPGPUs are employed for the CAE 
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training. In contrast, Horovod performs worst among the compared frameworks. As 

DeepSpeed shares most of the source code with the PyTorch-DDP framework, these two 

frameworks perform quite similarly. Except for Horovod, all investigated frameworks show a 

good scaling performance, see Figure 8b. As shown in Figure 8d, HeAT achieves an efficiency 

value of e=0.89 when 32 GPGPUs are used, e=0.83 is the efficiency value achieved by DDP 

and DeepSpeed. The Horovod framework only achieves an efficiency of e=0.62 on 32 

GPGPUs. Interestingly, the efficiency value of Horovod sharply reduces down to e=0.81 when 

two nodes (or four GPGPUs) are employed. This indicates that Horovod might be experiencing 

node-based communication issues. Figure 8e shows the relative speed-up in percentiles, 

based on the slowest framework, indicating how much scaling performance could be gained 

by employing alternative distributed data parallel frameworks. Here, HeAT is evidently 

computationally faster and scales better to larger amounts of workers than the compared 

distributed data parallel framework. 

The training error is computed as presented in [18]. Even though the scaling performance of 

Horovod is not satisfactory, a lower training error is achieved with this framework, see Figure 

8c. Here, HeAT also achieves similar training errors. However, both PyTorch-DDP and 

DeepSpeed show larger training errors compared to HeAT and Horovod. Figure 8f shows the 

square rooted relative training error between the considered distributed data parallel 

frameworks in percentiles, based on the framework with the largest training error, i.e., the 

framework with the lowest accuracy shows the highest percentile. It can be seen that Horovod 

achieves the best relative square rooted training error on 32 GPGPUs. HeAT is, however, not 

far behind with similar training error values. It can be concluded that HeAT clearly outperforms 

the other distributed data parallel framework due to its scaling performance and excellent 

accuracies, noting that these results are performed on the CTE-AMD system. 
 

 
Figure 9: Performance of the PyTorch-DDP framework for training on a small version of the ATBL dataset 

on the CTE-AMD, DEEPEST, and JUWELS-BOOSTER systems. The CTE-AMD machine is equipped with 

AMD MI50 (red), the DEEP-EST system with NVIDIA V100 (blue), and the JUWELS-BOOSTER with NVIDIA 

A100 GPGPUs (green). Depcicted are the compute time over the number of GPGPUs (a) and the relative 

performance (b). Note the exponential scales. 

 

Figure 9 shows the performance of the PyTorch-DDP for training on the small version of the 

ATBL dataset on the three different systems, each with different GPGPU-kinds.The CTE-AMD 

system is equipped with AMD MI50, the DEEP-EST system withNVIDIA V100, and JUWELS- 

BOOSTER with NVIDIA A100 GPGPUs, see Deliverables D2.5 and D2.6. That is, three 

GPGPU types are cross-compared. For each test, a total of 10 epochs E-10 are performed for 
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the sake of computational time, the batch size per GPGPU is set to B=96, and the 

hyperparameter learning rate to L=0.01. Again, the CAE trainings employ the Adam 

optimization algorithm [19] with a weight decay parameter of W=0.003. It should be noted that 

these systems use slightly different node-based InfiniBand (IB) connections - the slowest being 

the DEEP-EST system with InfiniBand-Enhanced Data Rate (IB-EDR) connection. 

The PyTorch-DDP framework shows similar scaling performances across all systems, shown 

in Figure 9 (not shown but marginally visible from computational times in Figure 9a - the 

training times reduce in similar order at each system). Figure 9 also shows the relative 

performance in percentiles, based on the slowest GPGPU, indicating how much performance 

could be gained by switching the systems. The new generation NVIDIA GPGPU A100 is 

approximately 2.3 times faster than the previous generation V100s. The performance of the 

AMD MI50 GPGPUs is close to that of the A100s, but 15% slower. As sole performance values 

are meaningless, further investigations considering the energy consumption are planned soon. 

 

 

 
 

Table 4: Performance of Horovod and PyTorch-DDP on the JUWELS-BOOSTER system; U: percentage of 

average GPGPU usage at training in %; e: parallel efficiency; T: run time in seconds; DT: data throughput 

in images per second. 

 

To enable a more general comparison, the Horovod and PyTorch-DDP frameworks are also 

evaluated on the default ImageNet benchmark, training a ResNet50 architecture on the dataset 

on up to 1,024 GPGPUs on the JUWELS-BOOSTER system. The run time of training the 

network for E=90 epochs with a batch size of B=64 per GPGPU is measured. The data 

throughput (images per second) is shown in Figure 10 (left). Overall, PyTorch-DDP performs 

much better than Horovod and achieves a higher data throughput on all instances with an 

increasing difference under an increasing number of GPGPUs. On 1,024 GPGPUs, PyTorch- 

DDP finishes its training in 203s and is thus more than twice as fast as Horovod, which requires 

488s for the same task. This is also evident from the plot of the parallel efficiency e in Figure 

10 (right). It is confirmed that PyTorch- DDP scales almost perfectly with e > 0.96 up to 1,024 

GPGPUs. In contrast, the efficiency of Horovod already drops below e = 0.90 at 8 GPUs. The 

drop in efficiency continues up to 256 GPGPUs, before a small increase appears at 512 GPUs, 

followed by a drop again at 1,024 GPUs. The general low scaling performance of Horovod is 

likely due to the consensus protocol and master thread that Horovod has to run in the 

background. Exact numbers are reported in Table 4. Apparently, Horovod is not able to fully 

utilize the GPGPUs, as it never reaches more than ~70% utilization while PyTorch-DDP utilizes 

more than ~80% for most runs. 
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Figure 10: Performance of Horovod and PyTorch-DDP on the ImageNet benchmark on the JUWELS- 

BOOSTER module for an increasing number of GPGPUs G. Left: Comparison of the data throughput DT in 

images i per second. Right: Comparison of the parallel efficiency e. 
 

As the batch size B increases with the number of workers, a drop in validation accuracy can 

be expected once B passes a certain threshold. Figure 11 shows that this drop occurs at a 

B=16,000 for Horovod and already at B=2,000-4,000 for PyTorch-DDP. It is interesting to note 

that overall Horovod retains a better validation accuracy than PyTorch-DDP. 

The results clearly show the superiority of the PyTorch-DDP framework over Horovod in terms 

of scalability. With a parallel efficiency of over 0.96 across all instances, PyTorch-DDP is close 

to the best-case scenario of linear scaling. However, the validation accuracy suffers from this 

approach and the training already diverges at medium-sized batch sizes. It is hence 

recommended to use PyTorch-DDP if scalability is in focus and large HPC systems are 

employed, and to use Horovod if high accuracy is demanded. 

 
 

Figure 11: Accuracy of the ResNet50 on the validation set V of ImageNet over the overall batch size B. 
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6 Summary and conclusions 

Several activities with respect to porting simulation and AI codes to different architectures and 

systems, and code optimizations were carried out in the first phase of the project. This included 

both simulation codes used in WP3, namely Alya and m-AIA, and a series of ML frameworks. 

The benefit of the optimizations was demonstrated through performance analysis that were 

performed on various supercomputers on different Tiers. 

Alya was ported to the Tier-0/1 system JUWELS-BOOSTER at FZJ and to the Tier-2 system 

Rudens at RTU. There, first performance results were obtained. 

For RWTH’s code m-AIA, the computational times were drastically reduced via a structural 

change of the source code. The overhead of the computationally expensive subroutines was 

transferred from CPUs to GPGPUs. For this purpose, the loops with OpenMP acceleration 

were replaced with Parallel Standard Template Library (PSTL) variants. The performance of 

the GPGPU-accelerated m-AIA code was cross-compared with the original pure CPU 

implementation of the code. This performance analysis of m-AIA was performed on the 

JURECA-DC and JUWELS-BOOSTER supercomputers at FZJ. 

Existing ML frameworks were ported to RTU’s Rudens system, to BSC’s CTE-AMD machine, 

and to FZJ’s DEEP-EST, JURECA-DC, and JUWELS-BOOSTER systems without any 

fundamental structural code changes. That is, each ML framework was ported to the 

heterogeneous systems by issuing simple commands. Therefore, the focus of the activities 

was on the analysis of the relative and scaling performance on different heterogeneous 

systems. With the help of an analysis of the relative performance, cross-comparisons were 

possible, whereas scaling analyses assessed the performance of these frameworks on 

different heterogeneous systems. From these analyses, it was evident that each of the 

considered frameworks could achieve either exceptional scaling performance or good training 

accuracy. It was found that blindly adding more GPGPUs to the ML training indeed reduced 

the training times. This was, however, accompanied by unacceptable training accuracies due 

to very large total batch sizes. A careful analysis of each ML framework should be performed 

to find a balance between the scale of the training (number of workers) and training accuracy. 

This is part of the ongoing work. 

All past and ongoing porting and optimization activities aim at bringing complete use-case- 

specific workflows including AI components to next-generation supercomputers. As the HPC 

landscape in Europe is continuously changing, more porting and optimization activities are 

planned for the second year, likely on the largest supercomputers. They will be reported in the 

next Deliverable D2.3 of this series of Deliverables in project month M24. 
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List of Acronyms and Abbreviations 

AI Artificial Intelligence 

ATBL Actuated Turbulent Boundary Layer 

AUSM Advection Upstream Splitting Method 

BS Batch Size 

BSC Barcelona Supercomputing Centre, Spain 

BSCW Basic Support for Cooperative Work 

CAE Convolutional Auto-Encoder 

CEA Comissariat à l'énargie atomique et aux énergies alternatives 

CERFACS Centre Européen de Recherche et de Formation Avancée en Calcul 

Scientifique, France 

CFD Computational Fluids Dynamics 

CINECA Consorzio Interuniversitario del Nord est Italiano Per il Calcolo Automático 

CI/CS Continuous Integration / Continuous Delivery 

CNN Convolutional Neural Network 

CoE RAISE Center of Excellence "Research on AI- and Simulation-Based Engineering at 

Exascale” 

CPU Central Processing Unit 

CSCS Centro Svizzero di Calcolo Scientifico 

DDP see PyTorch-DDP 

DL Deep Learning 

DLB Dynamic Load Balance library 

DLR German Aerospace Center 

EoCoE-II Energy Oriented Centre of Excellence 

FFTW Fastest Fourier Transform in the West 

FV Finite Volume 

FZJ Forschungszentrum Jülich GmbH, Jülich, Germany 

GCC GNU Compiler Collection 

GPGPU General Purpose Graphics Processing Unit 

GPU Graphics Processing Unit 

HDF5 HDF5 high performance data software library and file format to manage, 

process, and store your heterogeneous data 

HeAT Helmholtz Analytics Toolkit 

HLRS High-Performance Center Stuttgart 

HPC High-Performance Computing 

IB InfiniBand 

IB-EDR InfiniBand-Enhanced Data Rate 

I/O Inpout/Output 

JSC Jülich Supercomputing Centre 

JUDAC Jülich Data Access system 

JUDOOR Portal for managing accounts, projects and resources at JSC 

JURECA Jülich Research on Exascale Cluster Architectures 

JUWELS Jülich Wizard for European Leadership Science 

KIT Karlsruhe Institute of Technology 

LES Large-Eddy Simulations 

ML Machine Learning 

MNIST Modified National Institute of Standards and Technology 
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MPI Message Passing Interface, API specification typically used in parallel 

programs that allows processes to communicate with one another by sending 

and receiving messages 

MUSCL Monotone Upstream Centered Scheme for Conservation Laws 

NCCL NVIDIA Collective Communication Library 

NIST National Institute of Standards and Technology 

NLP Natural Language Processing 

NVHPC NVIDIA HPC SDK. A Comprehensive Suite of Compilers, Libraries and Tools 

for HPC 

OpenACC Programming standard for parallel computing 

PRACE Partnership for Advanced Computing in Europe (EU project, European HPC 

infrastructure) 

PBS Portable Batch System 

PSTL Parallel Standard Template Library 

PyTorch-DDP PyTorch Distributed Data Parallel 

RAISE see CoE RAISE 

RCCL ROCm Communication Collectives Library 

RTU Rigas Tehniska Universitate, Latvia 

RWTH Rheinisch-Westfälische Technische Hochschule Aachen, Germany 

SIMD Single Instruction-Multiple Data 

SMT Simultaneous Multithreading 

TCP Transmission Control Protocol 

TGV Taylor-Green Vortex 

TALP Tracking Application Low-level Performance library 

UDP User Datagram Protocol 

UEBAS The Unified European Applications Benchmark Suite 

UFTP User Datagram Protocol - File Transfer Protocol 

UOI Háskóli Íslands – University of Iceland, Iceland 

WP Work Package 

ZeRO Zero Redundancy Optimizer 


